Review

Compatibility of timber and non-timber forest product management in natural tropical forests: Perspectives, challenges, and opportunities

Manuel R. Guariguata a,*, Carmen García-Fernández b, Douglas Sheil c, Robert Nasi a, Cristina Herrero-Jáuregui d, Peter Cronkleton a, Verina Ingram a

a Center for International Forestry Research (CIFOR), P.O. Box 0113 BOCBD, 16000 Bogor, Indonesia
b Bioversity International, Via dei Tre Denari 472/a, 00057 Maccarese, Rome, Italy
c Institute of Tropical Forest Conservation (ITFC), Bwindi Impenetrable National Park, P.O. Box 44, Kabale, Uganda
d Departamento de Ecologia, Facultad de Biologia, Universidad Complutense de Madrid, 28040 Madrid, Spain

ABSTRACT

Tropical forests could satisfy multiple demands for goods and services both for present and future generations. Yet integrated approaches to natural forest management remain elusive across the tropics. In this paper we examine one combination of uses: selective harvesting of timber and non-timber forest product (NTFP) extraction. We analyze the current status of this combination and speculate on prospects and challenges regarding: (i) resource inventory, (ii) ecology and silviculture, (iii) conflict in the use of multipurpose tree species, (iv) wildlife conservation and use, (v) tenure, and (vi) product certification. Our conclusions remain preliminary due to the relative paucity of published studies and lessons learned on what has worked and what has not in the context of integrated management for timber and NTFPs. We propose at least three ways where further research is merited. One, in improving ‘opportunistic’ situations driven by selective timber harvesting that also enhance NTFP values. Two, to explicitly assess biophysical, social, regulatory and institutional aspects so that combined benefits are maximized. Interventions for enhancing the compatibility of timber and NTFP extraction must be scaled in relation to the size of the area being managed, applied timber harvesting intensities, and the dynamics of multiactor, forest partnerships (e.g., between the private sector and local communities). In addition, training and education issues may have to be re-crafted with multiple-use management approaches inserted into tropical forestry curricula.

© 2009 Elsevier B.V. All rights reserved.
non-industrial actors—both for present and future generations (Kant, 2004). To accommodate these requirements, sustainable forest management (SFM) emerged in the early 1990s (Poore, 2003), and multiple-use forestry became entrenched within SFM as a way to achieve socially and environmentally driven development models in the tropics (Panayotou and Ashton, 1992). Yet, clearly defined multi-use approaches to natural forest management remain elusive (García-Fernández et al., 2008). The application of Reduced impact logging (RIL) guidelines (reviewed in Putz et al., 2008) largely contributed to an increase in the area of natural forest under SFM from less than one million ha in 1988 (Poore et al., 1989) to about 36 million ha by 2005 (ITTO, 2006).

However, this quest for sustainability was largely disconnected from other forest goods and services, including NTFPs which are still treated in relative isolation (Lawrence, 2003). Clearly, SFM is about more than RIL, and there is now renewed interest in developing multiple-use tropical forestry (e.g., Sist et al., 2008 and accompanying papers; Shanley et al., 2008).

Diversified forest demands can be met either by spatially segregating uses for particular goods and services (Vincent and Binkley, 1993; Binkley, 1997; Zhang, 2005), or by managing forest stands to meet multiple objectives from the same area. The latter model is widespread across the tropics (Sayer and Byron, 1996; Poore, 2003; Nittler and Tschinkel, 2005), but whether or not multiple-use of forest goods and services facilitates sustainability still generates much debate. For example, skeptics question the extent to which economic returns from NTFPs and other values are sufficient to outweigh the financial costs of modifying and/or applying RIL norms (Barreto et al., 1998; Pearce et al., 2003) and silvicultural practices needed for sustaining timber production over the long term (e.g., enrichment planting, Schulze, 2008; liberation thinning, Wadsworth and Zweede, 2006). Advocates of multiple-use forest management emphasize that by incorporating many forest goods and services, including the voices of different stakeholders, a social and financial edge can be gained over timber-dominated models (Ashton et al., 2001; Campos et al., 2001; Hiremath, 2004; Wang and Wilson, 2007). This paper examines one of the possible combinations for multiple-use: extraction and management of timber and NTFPs. We discuss the current status of this combination, speculate on both the barriers and opportunities for integrated management for timber and NTFPs as a land use option, and provide insights on moving forward. Our paper focuses on mechanized, selective logging as this remains the dominant and most profitable option in natural tropical forests and excludes agroforests, regenerating fallows, and/or planted forests (where timber and NTFPs may also be managed concurrently; e.g., Toledo et al., 2003; Belcher et al., 2005; Michon et al., 2007).

2. Examining the compatibility of timber and NTFP management

The degree of compatibility between management of timber and NTFPs can be discerned along different axes. A simple framework (Titus et al., 2006) has been proposed which covers a continuum of management actions that either indirectly benefit NTFP values (“passive” or “opportunistic” compatibility), or that are explicitly applied to enhance both timber and NTFP values concurrently (“active” compatibility). Examples on one end of this continuum are (i) the establishment of timber concessions with the potential to secure long-term access to NTFPs; and (ii) the positive effects of increased light levels on a given NTFP species after selective logging. An example on the other end is the extension of RIL guidelines to minimize collateral damage to NTFP-bearing trees during timber extraction. Although much of this paper may well fit into the above framework, we emphasize six topics: (i) resource inventory, (ii) ecology and silviculture, (iii) conflict in the use of multipurpose tree species, (iv) wildlife conservation and use, (v) tenure and access rights, and (vi) product certification. These topics are key components of SFM (e.g., Durst et al., 2005), and encompass the most relevant published information and examples in the context of our analysis. However, we recognize that other factors (e.g., seasonality, legal frameworks, gender) may cut across the above topics.

We provide an indicative list of these additional set of factors and the way they may affect compatible management outcomes of timber and NTFPs in Table 1.

2.1. Resource inventory

Based on a global assessment, Vantomme (2003) concluded that national statistics on NTFPs, including data on the resource base, are absent for all but a few internationally traded products (where data are usually limited to export quantities). It is therefore not surprising that little effort may have been directed at integrating inventories of NTFPs into timber censuses. When implemented, these inventories concentrate more on tallying the presence of locally important NTFPs than on estimating yields for guiding management. In the Congo Basin, NTFPs including bushmeat and/or evidence of bushmeat hunting are routinely recorded in timber inventories, but in most cases this information (e.g., Van Vliet and Nasi, 2008) is rarely used in informing the design of multi-use management plans. Mapping the presence of locally important NTFP species before logging may, nevertheless, be necessary to ensure that they are maintained in forests managed primarily for timber. In Indonesian Borneo, for example, the palm *Eugeissona utilis*, one very important emergency forest food for the Punan hunter gatherers, grows along ridge tops and is often damaged when opening skid trails (Sheil et al., 2008). In this context, local knowledge is potentially critical in informing NTFP inventories alongside timber (Cunningham, 2001; Lawrence et al., 2005; Shanley and Stockdale, 2008).

Even in cases where timber and NTFPs have high commercial value, the cost-effectiveness of implementing integrated inventories of timber and NTFPs may depend on the extent of biological similarity between both types of product. Despite early efforts (e.g., Pineda, 1996) in the community forestry concessions of Petén, Guatemala, in designing integrated inventory protocols for timber and NTFPs, including the fmonds of high-valued *xate* (*Chamaedorea spp.*) understory palms, their implementation has been limited to date (Louman et al., 2008). Timber in the Petén is harvested from annual compartments of fixed area under decades-long rotations, while *xate* palms take only 4–6 months to regain pre-harvest yields. Because of its wide distribution across the entire forest *xate* can therefore be harvested more frequently and over larger areas than within annual logging blocks; hence a different inventory protocol was designed (outlined in Godoy et al., 2009). Moreover, the size of plots used for timber inventory was insufficient for concurrent, reliable estimates of sustainable harvest rates of *xate* leaves that were needed to fulfill FSC-certification standards currently enjoyed by this NTFP (see Section 2.6). In contrast, arborescent palms or other NTFP-bearing trees are more amenable for integrated timber–NTFP inventories since little deviation is needed from common practice. For example, the management potential of both timber and NTFPs derived from palms and trees (fruit, seed oils, latex) in Amazonian floodplain forests was determined through standard, tree inventory assessment (Fortini et al., 2006). Another advantage of shared biological similarity is that, in the case of arborescent life forms, logging damage to NTFP-bearing trees can be easily minimized by marking them during routine, pre-harvest timber inventories (Guariguata et al., 2009).
2.2. Ecology and silviculture for timber and NTFP management

From a biophysical standpoint, the compatibility of management for timber and NTFP harvesting may be positively or negatively affected by the wide range of logging intensities applied across the forested tropics (Putz et al., 2001; Sist and Ferreira, 2007), direct post-logging impacts such as increased tree mortality rates (Gourlet-Fleury et al., 2004; Schulze and Zweede, 2006), overall changes in forest structure (Jonkers, 1987; Johns et al., 1996), increased levels of solar radiation (Webb, 1999; Pereira et al., 2002), the presence of disturbed or otherwise compacted soil (Hendrison, 1990; Pinard et al., 2000), and the ecological attributes of the NTFP in question. For example, climbing palms (many of which are high-value NTFPs such as Desmoulin spp., and rattans such as Calamus spp.) usually benefit from logging-related canopy opening (Siebert, 1993, 2000; Asseng Ze, 2008). Similarly, understory plants with NTFP value may survive better and elevate their reproductive activity after logging gaps are created (e.g., Costa and Magnussson, 2003); although not all of these may benefit from high-light environments (e.g., Ocampo Sánchez, 2004). Post-logging, tree fruit production due to improved crown illumination is also possible (Johns, 1988; Guariguata and Sánz, 2002; but see Fonseca et al., 2009). However, any beneficial post-logging effects on NTFP growth and yield are expected to be both localized and possibly short-lived, in the context of the long rotation cycles in selectively logged tropical forests (not less than 30–40 years) if no silvicultural treatments are further applied.

The few published works on the effects of selective logging on NTFP yields point to compatibility at the stand level, at least under experimental conditions. In lowland Nicaragua, Salick et al. (1995) reported that the density of locally useful woody plants was comparable in both logged and unlogged plots. Similarly, 9 years after RIL was applied in a Costa Rican montane forest, the harvestable biomass of non-vascular epiphytes (a locally important NTFP) equalled that of adjacent, unlogged plots (Romero, 1999). In the eastern Amazon, Menton et al. (2009) concluded that smallholder (~90 ha) forests that were selectively logged under RIL norms showed, after 18 mo, no discernible difference in harvest yields of both game and tree fruits when compared to smallholder forests where no logging took place. The authors hypothesized that low NTFP harvest rates and minimal logging impacts both accounted for the observed compatibility of timber and NTFP management at the landscape scale (although they reported high inter-household variation). Similar studies along these lines are currently few in number yet necessary to better inform the design of compatible management interventions for timber and NTFPs. However, RIL may not always favor compatibility. For example, both number and size of logging gaps in forests logged under RIL norms in Amazonian forests may be insufficient for light-demanding timber trees, including those with concurrent NTFP value, to regenerate (Schulze, 2008; Schulze et al., 2008a; see Section 2.3 below).

Some operational norms applied in forests managed for timber may facilitate NTFP management objectives. For example, lianas in tree crowns can reduce tree fruiting (Wright et al., 2005) including timber species (Fonseca et al., 2009). Liana cutting, applied primarily as a way to reduce logging damage to residual trees and to improve worker’s safety (Putz et al., 2008), could be extended in managed forests to enhance fruit production in NTFP-bearing trees as suggested for Brazil nut (Bertholletia excelsa, Lecythidaceae; Kainer et al., 2006, 2007). Silvicultural treatments after selective tree harvest such as removing tree neighbors from future crop trees (De Graaf et al., 1999; Wadsworth and Zweede, 2006) and stand refinement and soil scarification in logging gaps (e.g., Peña-Claros et al., 2008) may be adequate for either natural regeneration or enrichment planting of light-demanding NTFPs. Harvest systems typically applied in Asian dipterocarp forests such as shelterwood cutting (which remove or reduce the overstory) also appear ecologically and economically amenable for managing timber and light-demanding NTFPs (Ashton et al., 2001). However, existing silvicultural treatments may require adjustment. For example, the current Indonesian regulation on timber cutting...
Conflict of use arises when the same tree species provides both timber and NTFP values. And it exacerbates when different stakeholders are involved in the extraction of each (Laird, 1999; Menton, 2003; Shanley and Luz, 2003). Herrero-Jauregui et al. (2009) observed that 47% of all timber species currently traded in the Amazonian state of Pará in Brazil also have documented non-timber uses. As expected, the greater the resources values, the greater the conflict. Four species scored specially high in this respect: Dipterex odorata, Hymenaea courbaril (both Fabaceae), Tabebuia serratifolia and Tabebuia impetIGINOSA (both Bignoniaceae). Medicinal plant collectors greatly value the bark of *T. impetiginosa* and *H. courbaril* trees, whereas the oil from the seeds of *D. odorata* is widely extracted for cosmetic and medicinal purposes. In the particular case of *T. impetiginosa* and *H. courbaril*, conflict of use is acute because both species regenerate poorly due to their light-demanding attributes, low population densities, and low growth rates (Schulze, 2008). The long-term population persistence and the capacity of local people to collect bark of *T. impetiginosa* for local medicinal and public health purposes (Gómez-Castellanos et al., 2009) may disappear over time if post-logging enrichment planting is not applied (Schulze et al., 2008a,b).

Conflict of use is also widespread in Central Africa. In Cameroon, out of the 23 top timber species being exported, over half of these also have NTFP value (Ndoye and TIEGUHONG, 2004). In both Cameroon and Central African Republic, the three most exploited timber species, *Triplochiton scleroxylon* (Sterculiaceae), *Entandrophragma cylindricum* (Meliaceae) and *Milicia excelsa* (Moraceae) are also sources of medicine and food (TIEGUHONG and Ndoye, 2007). In both Cameroon and the Democratic Republic of Congo, the Forestry Laws have clarified logging companies’ obligations towards local people with provisions to avoid timber exploitation obstructing villagers in exercising their user rights. To meet this objective, local communities and timber companies work together to reach agreements on maintaining tree species with conflict of use. Yet, at least in Cameroon, inventorying (plant) NTFPs as part of timber censuses is done at the discretion of the concessionaire (GTZ, 2006). Others have suggested that government agencies assign harvest quotas for those timber species with high NTFP value and compensate timber companies for any forgone revenue (TIEGUHONG and Ndoye, 2007).

An alternative intervention for minimizing conflict of use includes legal protection from logging when both the NTFP economic and social value equals or exceeds the timber value. Such protection is currently extended for the Brazil nut tree in Brazil, Peru, and Bolivia, due to its pivotal role in sustaining rural livelihoods (Ortiz, 2002; Peres et al., 2003). However, the extent of conflict of use is often culturally and geographically specific, thus complicating any necessary steps towards legal protection at broad spatial scales. For example, in the Pokola–Kabo–Loundougou forest concession in Congo, five species extracted for timber were noted as having no NTFP value yet they were commonly used as NTFPs in southwestern and eastern Cameroon. Conversely, one of the most commercially valuable timber species (*E. cylindricum*), is used as a medicine in central and eastern Cameroon, but not in the south west (NZALA, 2002).

Another intervention is the spatial separation of management units for either timber or NTFPs (e.g., da Silva Dias et al., 2002). The feasibility of this option will depend, among other factors, on the nature of the NTFP in question and its habitat requirements. For example, the locally valuable, multipurpose tree *Carapa guianensis* (Meliaceae) shows higher adult densities in seasonally flooded than *terra firme* forests in the southwestern Brazilian Amazon (Klimas et al., 2007). Management objectives for either timber or the high-quality oil extracted from its seeds can be spatially segregated if seed harvest intensities are anticipated to be high. In this case, allocating flooded forest areas only for seed collection may be a sensible alternative. Yet, areas destined for tree seed collection need to be extensive enough to compensate for interannual and/or inter-tree variability in seed production, a typical trait of many tropical forest trees (Wright et al., 2005) including those bearing NTFPs (Wadat et al., 2005). A related issue to consider in multipurpose tree species is the nature of the relationship between individual size and NTFP yields. For example, if fruit production peaks at intermediate (instead of large) diameter classes (e.g., Soehartono and Newton, 2001; Kainer et al., 2007), the largest (i.e., less fecund) individuals are amenable to harvesting or otherwise setting aside during multi-use planning. The copaiba tree (*Copaifera* spp., Caesalpiniaceae), an Amazonian timber species, is a similar case. The intermediate-sized individuals yield the highest amount of tapped oleoresin while the largest (usually with hollow trunks) produce negligible amounts (Plowden, 2003).

2.4. Wildlife conservation and use

Most vertebrate species can persist in selectively logged forests as long as most indirect effects such as hunting, forest fragmentation, and forest fires are controlled (Johns, 1997; Meijaard et al., 2005; Azevedo-Ramos et al., 2006). Yet, the indirect effects are widespread and pervasive (Laurance and Peres, 2006), particularly hunting for bushmeat. For example, per capita wildlife harvest rates in settlements adjacent to logging concessions are much higher than those away from concessions (Robinson et al., 1999; Auzel and Wilkie, 2000; Thibault and Blaney, 2003). Furthermore, bushmeat is usually hunted by outsiders at the expense of those who own prior, legitimate claims to forest wildlife (Poulsen et al., 2009). Regulating or banning hunting in timber concessions is now a widely agreed measure by national governments, researchers, concessionaires, non-governmental organizations and the international community (Bennett and Robinson, 2001; Meijaard et al., 2005; Nasi et al., 2008).

The compatibility of timber harvesting with the survival of wildlife may be contingent on other (interrelated) measures. One is to put pressure on timber concessionaires to control the activities of their own employees, such as banning them from purchasing bushmeat from forest villagers, and/or providing workers and families with alternative protein sources. Some companies are implementing such regulations in Congo, Gabon and Cameroon, in partnership with non-governmental organizations and usually with external funding support (Aviram et al., 2003). Another measure is allowing rural communities to sell bushmeat for local...
consumption in, or nearby, urban centers. An example is the Congolaise Industrielle des Bois timber concession in North Congo, where communal hunting areas were created for abundant and ecologically resilient species (i.e., with high intrinsic rates of population increase such as ungulates and rodents; Bennett and Robinson, 2000) while prohibiting the hunting of legally protected species (Elkan et al., 2006). These kinds of initiatives are likely to promote compatible timber and wildlife uses although further interventions may be needed. Some have suggested, for example, to locate sawmills in existing cities to avoid urbanization in, or adjacent to, logging concessions (Poulsen et al., 2009).

Besides terrestrial vertebrates, the effects of selective logging on aquatic wildlife for human consumption appear less studied. In the hilly landscapes of Borneo, many locally important fish species are known to be sensitive to disturbance due to enhanced stream sediment levels after logging roads are built (Meijaard et al., 2005). Locating logging roads away from streams and minimizing their width may help to reduce sediment loads into streams and rivers. The application of RIL guidelines (which include minimizing soil damage) in an Amazonian timber concession revealed no medium-term loss of fish species from forest streams compared to unlogged areas, although changes in the abundance of some species were detected (Dias et al., 2009).

2.5. Tenure and access rights

In addition to the topics discussed above, moving towards compatibility of timber and NTFP management requires understanding of who has rights and responsibilities for management decisions for both types of product. Rather than individual and comprehensive ownership rights, forest property in many contexts is an overlapping ‘bundle of rights’ including those to access and harvest the resource, to manage it and exclude others, and to sell or transfer resource rights to others (Schlager and Ostrom, 1992). Typically, local stakeholders hold only a partial set of rights while others have rights over the same resource or property (Meinzen-Dick and Mwangi, 2008). The type of right held and the presence of multiple rights holders will influence the compatibility of integrated management approaches for timber and NTFPs, and the prospects for enforcing norms and agreements.

For example, the community forest concessions in Petén, Guatemala, were superimposed by the government on pre-existing rights regarding to NTFPs such as the fronds of xate understory palms. Rights over xate are largely held by stakeholders outside community concession organizations and conflicts between some community concessionaires and outside harvesters are not uncommon (Nittler and Tschinkel, 2005). In northern Bolivia, conflict and confusion over tenure rights have resulted from industrial timber concessions being superimposed on customary properties such as forest estates called barracas and agro-extractive communities who are dependent on Brazil nut extraction (de Jong et al., 2006). In both cases, even if selective timber harvesting and NTFP extraction are biophysically compatible, the potential for excluding legitimate rights holders from forest benefits may undermine the prospects of an integrated management regime from a social standpoint (Guariguata et al., 2008).

2.6. Product certification

The proliferation of different certification standards, the presence of different groups of harvesters for either timber or NTFPs and the inherent diversity of NTFPs (Shanley et al., 2002), currently hampers the development of cost-efficient, harmonized labelling procedures for timber and NTFPs in a given forest. Lack of consumer awareness about the environmental and social aspects of NTFP extraction, compared to timber, may also become a barrier (Shanley et al., 2008). Furthermore, NTFP certification is usually product-specific (food, personal care, or medicine), and its standards focus on issues of ‘product quality’, ‘organic production’ ‘good agricultural practices’ and/or ‘source of origin’ (Pierce and Laird, 2003). In contrast, tropical timber certification through Forest Stewardship Council (FSC, 1996) standards is holistic and granted at the level of the forest stand without guarantees that each timber species is extracted sustainably (Schulze et al., 2008b).

The many differences in information needs, economic value and management procedures for timber and NTFP certification (highlighted in Table 2) suggest that much work lies ahead in moving towards compatibility from a certification standpoint.

Another constraint to compatible certification approaches is that knowledge on population density, regeneration rates, and optimum management practices for most NTFPs is scant. This knowledge is needed for delineating management standards, including sustainable harvest regimes. Whereas guidelines for timber management in tropical forests date back to more than a century of research and development (Dawkins and Philip, 1998), formal management principles for NTFPs have a more recent history (Peters, 1996; Wong et al., 2001; Stockdale, 2005; Medicinal Plants Specialist Group, 2007); while informal principles need further integration into certification procedures and forest management (Shanley and Stockdale, 2008). Overall, few such principles have yet been validated or widely adopted.

A key variable influencing the harmonization of certification procedures for NTFPs and timber is whether or not a given NTFP involves human consumption. For example, organic certification of Brazil nuts gathered from the Bolivian Amazon needs to follow strict international standards for collection, handling, and storage (e.g., European Union Regulation 2092/91; SIPPO, 2005). Some

Table 2

Main factors and characteristics influencing the management of timber and non-timber forest products (NTFPs) when developing integrated product certification approaches. Modified from Shanley et al. (2008).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Timber</th>
<th>NTFPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td>-Relatively well-established guidelines</td>
<td>-Incipient guidelines with multiple standards (organic, fair trade)</td>
</tr>
<tr>
<td></td>
<td>-Standards relatively uniform and globally accepted</td>
<td>-Quality control compliance issues for edible and medicinal products</td>
</tr>
<tr>
<td></td>
<td>(e.g., Forest Stewardship Council)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-No hygiene/quality control issues for human consumption</td>
<td></td>
</tr>
<tr>
<td>Ecological</td>
<td>-Good amount of technical data for developing management plans</td>
<td>-Except for a few species, ecological data for developing management plans is lacking</td>
</tr>
<tr>
<td>Economic</td>
<td>-Moderate to high economic returns</td>
<td>-Low economic return for most species</td>
</tr>
<tr>
<td></td>
<td>-Relatively stable, national and international markets</td>
<td>-Local markets predominate, while large fluctuations are the norm in international markets</td>
</tr>
<tr>
<td></td>
<td>-Certification affordable for large industries but challenging for smaller operations</td>
<td>-Certification usually unaffordable unless combined either with timber or heavy subsidies</td>
</tr>
</tbody>
</table>
Brazil nut cooperatives in Bolivia now prohibit members from harvesting timber in organically-certified Brazil nut stands. The fact that organic labelling drives Brazil nut certification in Bolivia may explain the fact that, for example, FSC-certified timber concessions have not yet attempted to certify Brazil nuts under the current FSC standards developed for this NTFP (FSC norms for Brazil nut are also perceived as too complicated to implement; Pacheco and Cronkleton, 2008). In contrast, FSC standards for management of xate fronds in Guatemala were recently appended to those of (FSC) timber in three different concessions covering about 190,000 ha of forest (Smartwood, 2007). This is expected to facilitate and harmonize the auditing process while reducing the costs of applying multiple certification schemes. The fronds of xate are used in floral arrangements and are not consumed by humans thus facilitating compatibility of certification of timber and xate under FSC principles.

3. Looking forward: towards compatibility of timber and NTFP management

Given the growing demands on tropical forests regarding the many goods and services they provide, effective guidelines for multiple-use management systems are essential. Here we used timber as the ‘primary’ output upon which tradeoffs and management challenges could be identified when adding NTFPs as a ‘secondary’ output (Panayotou and Ashton, 1992); hence our discussion above and below needs to be interpreted in this context. One obvious outcome from our analysis is that compatible management of timber and NTFPs is inherently multifactorial and context-dependent (Table 1). In some situations, compatibility is possible and in others, it may prove difficult to achieve. This conclusion remains, however, speculative due to the paucity of published studies on integrated management approaches for timber and NTFPs across the tropics. We provide some suggestions for making progress.

García-Fernández et al. (2008) hypothesized that governance conditions relating to land-devolution policies, effective collective institutions and the design of multi-stakeholder management models are important enabling factors for multiple forest use to succeed in the tropics. An example offering partial support comes from Guatemala. When the community forestry concessions were created in the lowlands of the Petén during the early 1990s, multiple objectives (production of timber and NTFPs) were explicitly defined from the outset. Since then, concerted efforts by the national authority responsible for overseeing the implementation of sustainable management, forest managers, researchers, and organizations providing technical assistance have contributed towards compatibility of timber and NTFP management (Pinelo, 2009). In particular, by enforcing good management practices for the harvest of timber and commercially valuable xate fronds. The lessons learned from the Petén (see Carrera et al., 2004; Nittler and Tschinkel, 2005) may be useful in other tropical locations where concurrent management of timber and NTFPs is sought.

Others have argued (e.g., Sands, 2005; p. 159) that a major predictor of success in implementing multiple forest use is ownership, or else direct oversight, by governments (whereas private companies would favor specialization over a single commodity). The eleven cases (out of 28 cases) of ‘exemplary management’ in Asia and the Pacific listed in Durst et al. (2005) and that included multiple-use objectives, are all forests being managed by governmental agencies. Testing pilot management systems for timber and NTFPs in forests where governments exert a direct role may prove fruitful. The Central Africa regional norms (FAO et al., 2008) developed for managing NTFPs indicate how countries can incorporate NTFPs in policy, legal, fiscal and institutional frameworks and provides a working model vis-à-vis timber production.

We suggest three (interrelated) ways to move forward when compatibility of timber and NTFP extraction is a management goal. One is to improve “passive” or “opportunistic” compatibility situations. For example, by enforcing the mitigation of logging impacts on the NTFP resource base (Tieguhong and Ndoye, 2007; Guariquita et al., 2009). Another alternative is to explicitly enhance both timber and NTFP values. Recent calls for researching and implementing silvicultural intensification in forests managed under RIL guidelines to ensure long-term timber production in tropical forests (Fredericksen and Putz, 2003; Peña-Claros et al., 2008; Schulze et al., 2008d), may open avenues for concurrent management of locally important NTFPs. Third, assessing biophysical, social, regulatory and institutional aspects so that trade-offs are minimized among stakeholders regarding timber and NTFPs (Purnomo et al., 2005; Lawrence, 2007; Lynam et al., 2007). Ros-Tonen et al. (2008) provide examples from the Brazilian Amazon where partnerships between local forest users, the private sector, non-governmental organizations, and the civil society could facilitate the insertion of NTFPs into timber-oriented models. The practicalities and effectiveness of the above proposals will also depend on the scale of management, timber harvesting intensities and mode of extraction (e.g., RIL vs. conventional logging), and the NTFP harvesting intensities among others. For example, from extensive industrial timber concessions where NTFPs are allowed to be harvested by local people (e.g., Guariquita et al., 2009), to small, multi-use forests that are managed communally or by individual families (e.g., Rockwell et al., 2007a,b; Menton et al., 2009).

Finally, tropical forestry training and education institutions may have to be re-crafted. Any formal insertion of multi-use management into tropical forestry curricula, especially in developing countries, will require financial and human resources and the development of innovative training and educational material (Temu et al., 2008). Otherwise we run the risk of perpetuating a timber bias when NTFP management plans are drafted. For example, the current technical norms for Brazil nut management in Bolivia require forest owners to establish ‘no take’ zones of up to 6% of the total production area for up to 5 years (Ministerio de Desarrollo Sostenible, 2005). The norms provide little guidance as to where in the forest this should be done thus disregarding the very high-light habitat requirements of Brazil nut trees for seedling and sapling establishment (Cotta et al., 2008). The norms also call for carrying out detailed Brazil nut tree inventorying and to measure commercial bole height and degree of crown illumination, with no obvious connection to nut harvest and management practices. In contrast, NTFP norms and regulations developed at the national level often disregard timber harvesting as a potentially overlapping activity. Although there are documented initiatives in Brazil at training tropical foresters in bridging the gap between timber and NTFP use, ecology and management (Pinto et al., 2008; Shanley and Medina, 2005), there is apparently little happening in other tropical locations. To conclude, given the millions of hectares of natural forest allocated for timber production in the Amazon (Schulze et al., 2008c) and Congo basins (Nasi et al., 2006; Laporte et al., 2007), and the equally vast area of natural tropical forest under control of rural communities (Sunderlin et al., 2008), there may be plenty of opportunities for designing and validating integrated management approaches that include timber and NTFPs.

Acknowledgements

We are grateful to Jack Putz and Mary Menton for their comments and observations to a previous version, and to Todd...
Frederiksen and three reviewers for their insights and recommendations for improving the manuscript. The views expressed here are the sole responsibility of the authors and do not reflect those of their respective institutions.

References

