ESTUDIO DEL USO DE LA TIERRA, SUELOS Y PAISAJES DE NUEVA GUINEA, NICARAGUA

Efraín Acuña
Ignacio Rodríguez
Willem G. Wielemaker

Octubre 1992
Turrialba

CENTRO AGRONOMICO TROPICAL DE INVESTIGACION Y ENSEÑANZA - CATIE

UNIVERSIDAD AGRICOLA DE WAGENINGEN - UAW

MINISTERIO DE AGRICULTURA Y GANADERIA DE COSTA RICA - MAG
Location of the study area.
PREFACE

General description of the research programme on sustainable Landuse.

The research programme is based on the document "elaboration of the VF research programme in Costa Rica" prepared by the Working Group Costa Rica (WCR) in 1990. The document can be summarized as follows:

To develop a methodology to analyze ecologically sustainable and economically feasible land use, three hierarchical levels of analysis can be distinguished.

1. The Land Use System (LUS) analyses the relations between soil type and crops as well as technology and yield.
2. The Farm System (FS) analyses the decisions made at the farm household regarding the generation of income and on farm activities.
3. The Regional System (RS) analyses the agroecological and socio-economic boundary conditions and the incentives presented by development oriented activities.

Ecological aspects of the analysis comprise comparison of the effects of different crops and production techniques on the soil as ecological resource. For this comparison the chemical and physical qualities of the soil are examined as well as the pollution by agrochemicals. Evaluation of the groundwater condition is included in the ecological approach. Criteria for sustainability have a relative character. The question of what is in time a more sustainable land use will be answered on the three different levels for three major soil groups and nine important land use types.

Combinations of crops and soils

<table>
<thead>
<tr>
<th></th>
<th>Maiz</th>
<th>Yuca</th>
<th>Platano</th>
<th>Piña</th>
<th>Palmito</th>
<th>Pasto</th>
<th>Forestal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Soil II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Soil III</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

As landuse is realized in the socio-economic context of the farm or region, feasibility criterions at corresponding levels are to be taken in consideration. MGP models on farm scale and regional scale are developed to evaluate the different ecological criterions in economical terms or visa-versa.

Different scenarios will be tested in close cooperation with the counter parts.
El Programa Zone Atlántica (CATIE-UAW-MAG) es el resultado de un convenio de cooperación técnica entre el CATIE, la Universidad Agrícola Wageningen (UAW) Holanda y el Ministerio de Agricultura y Ganadería (MAG) de Costa Rica. El Programa, cuya ejecución se inició en abril de 1986, tiene, como objetivo a largo plazo la investigación multidisciplinaria dirigida a un uso racional de los recursos naturales, con énfasis en el productor pequeño de la Zona Atlántica de Costa Rica.
CONTENIDO

1 INTRODUCCION 1

2 METODOLOGIA 2

3 EVALUACION DE TRABAJOS ANTERIORES 3

3.1 Mapas y estudios de suelos 3
3.2 Uso y manejo potencial de la tierra 5

4 CLIMA, PAISAJES, SUELOS Y USO 7

4.1 Clima 7
4.2 Paisajes y suelos 7
4.3 Restricciones de los suelos para el uso agropecuario 12
4.4 Uso actual y uso recomendado 13

5 ESTUDIOS EN MICROZONAS 14

5.1 Introducción 14
5.2 Objetivos 14
5.3 Descripción de las microzonas 14
5.4 Estudios dentro de las microzonas 17
5.5 Extrapolación de los resultados de las microzonas 23

6 CONCLUSIONES Y RECOMENDACIONES 24

6.1 Condiciones físicas 24
6.2 Estudios específicos 24
6.3 Presentación y divulgación de los resultados 25
6.4 Ejecución 25

7 REFERENCIAS 27
1. **INTRODUCCION**

El presente estudio fue realizado en junio de 1990 en el municipio de Nueva Guinea, un área recién colonizada en la Zona Atlántica de Nicaragua. En esta zona los rendimientos de los cultivos decaen rápidamente, por lo que los campesinos venden sus tierras a los ganaderos y ocupan tierras virgenes en áreas adyacentes, tumbando el bosque tropical.

En este contexto, se impone contar con más información sobre los suelos del área y sobre el uso potencial de los mismos, a fin de que los campesinos puedan mantener la producción y se detenga la deforestación. Para ello se requiere de un conocimiento adecuado de los diferentes suelos y paisajes, de una evaluación de los problemas relacionados con el uso actual y de propuestas para un mejor uso.

Teniendo presente esa necesidad, se hizo una revisión crítica de los estudios de suelos disponibles y un reconocimiento de los suelos y paisajes de Nueva Guinea y del uso actual de la tierra.

Las microzonas de estudio se definieron con base en la información obtenida; cada microzona representa un área más extensa, similar en cuanto a tipo de suelos, paisajes, uso y clima.

Este estudio constituye un requisito parcial para la elaboración de un programa de desarrollo rural para el municipio de Nueva Guinea. En él se incluye una caracterización del paisaje y de los suelos y se identifican algunos tipos de uso de la tierra que parecen promisorios para considerar e implementar en la fase de ejecución del proyecto.
2. METODOLOGÍA

En la elaboración del estudio participaron tres edafólogos: E. Acuña e I. Rodríguez son funcionarios de la Universidad Nacional de Agronomía (UNA) de Managua, Nicaragua; W. Wielemaker trabaja para el Programa Zona Atlántica, un programa de investigación que desarrollan el Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) y la Universidad Agrícola de Wageningen (UAW) en Costa Rica.

Acuña y Rodríguez revisaron el material existente y comprobaron la confiabilidad de los mapas de suelos y paisajes; también prepararon el trabajo de campo, que fue realizado por los tres autores entre el 15 y el 20 de junio.

Para el trabajo de campo se usaron mapas topográficos en escala 1:50.000; también hay fotografías aéreas, pero no estaban disponibles. Debido a esta situación y a que se contaba con muy poco tiempo, no fue posible estudiar los paisajes para todo el área, y el trabajo de campo se realizó a lo largo de los caminos. Este trabajo consistió en lo siguiente:

- Se establecieron relaciones entre las formas del paisaje, la litología y los suelos a fin de fijar criterios para la subdivisión del área.

- Se buscaron sitios representativos para describir las formas del terreno, la litología y el suelo.

- En donde fue posible, se limpiaron paredones; donde no, se hicieron calicatas. En total se describieron 11 perfiles en calicatas, 30 en paredones y 7 barrenadas. Se extrajeron muestras en 11 sitios para ser analizadas en el laboratorio del ISCA.

- En los casos en que fue posible, se entrevistaron algunos finqueros para obtener información sobre el uso de la tierra en cada punto de observación. Para la descripción y la clasificación de los suelos se usó la Guía de la FAO (FAO, 1977) y la Taxonomía de Suelos (SOIL SURVEY STAFF, 1975).

El documento final se elaboró en julio de 1990; la revisión de estilo estuvo a cargo de la señora Teresa M. de Oñoro.
3. EVALUACION DE TRABAJOS ANTERIORES

3.1 Mapas y estudios de suelos

Para actualizar los trabajos existentes y formular recomendaciones para trabajos futuros, se consultaron y evaluaron los siguientes estudios:

A. Reconocimiento edafológico de la cuenca del Río Escondido. (Catastro y Recursos Naturales, 1978).

B. Potencial de desarrollo agropecuario y rehabilitación de tierras de la Costa Atlántica, Nicaragua. (TAHAL y Tecnoplan, 1978).

ad A. Con respecto al reconocimiento edafológico de la cuenca del Río Escondido, se arribó a las siguientes conclusiones:

- Retomó conclusiones de uso y manejo de tierras inadecuadas para la producción agropecuaria sostenible del estudio de suelos de baja intensidad del Proyecto Rigoberto Cabezas (INSTITUTO AGRARIO DE NICARAGUA, 1969).
- Utiliza la leyenda fisiográfica del levantamiento de tierras agrícolas (LIVSER CONSULTORES, 1969) sin ajustarla a las condiciones del área.
- Hace una extrapolación indiscriminada de los datos mineralógicos del estudio de suelos de baja intensidad de la Región del Río Escondido y sus afluentes (COLMET y DAAGE, 1969).
- El estudio de suelos no se hizo con base en un estudio geológico.
- Se vale de una fotointerpretación geomorfológica inadecuada para establecer una correlación aceptable entre el relieve y los suelos (unidades 1Vg, 2Vg, 3Vg, 1VJ, 2VJ y 3VJ que abarcan una gran extensión del área y se caracterizan por un amplio rango de pendientes de 0 a >50%).
- En este estudio, hecho en 1978?, se incluyeron las 350 observaciones y los 10 perfiles del estudio de suelos del Proyecto Rigoberto Cabezas (1969) con la clasificación del USDA de 1949, difícil de correlacionar con la Séptima Aproximación (1967) usada en los estudios A y B y sobre
todo en los 1200km² que abarca el área caracterizada en este trabajo.
- No se hizo un buen control de campo de las unidades geomorfológicas usadas como base para el levantamiento de suelos.
- Con sólo una observación por cada 20 km², la comprobación de campo en el estudio de la cuenca del Río Escondido es muy deficiente y el nivel de detalle no llena los requerimientos mínimos para un reconocimiento de suelos adecuado. Además, hay dificultades con la correlación entre las Clasificaciones Americanas de Baldwin (1949) y la Séptima Aproximación de 1967.
- No se utiliza la metodología adecuada para diferenciar entre Typic y Orthoxic Tropudults.
- A pesar de que se infiere la baja fertilidad contenida en la materia orgánica acumulada por el bosque en el horizonte A de los Ultisols y el peligro de que los nutrientes se agoten rápidamente o desaparezcan por erosión, se hacen recomendaciones agropecuarias y forestales en pendientes muy fuertes (uso potencial) que degradan el bosque y los suelos y sólo se propone la protección de los pantanos.
- No se tuvo en cuenta el efecto catastrófico de los huracanes del Caribe, que exigen considerar un uso y manejo agropecuario y forestal más protecciónstas, para una producción sostenible a largo plazo (los cítricos, las ceibas y el bambú resistieron el huracán Juana).
- Con los conocimientos disponibles en 1969 y 1979 no fue posible introducir concepciones ecológicas con alternativas de uso de la tierra, manejo adecuado y generación de tecnología agropecuaria y forestal apropiada para el trópico húmedo.

ad B. En el estudio de TAHAL y TECNOPLAN se retoma la información del "Reconocimiento edafológico de la cuenca del Río Escondido" y se incorpora la inconsistencia del uso potencial agropecuario y forestal de ese estudio, con excepción del bosque de protección con pendientes superiores al 30% y precipitaciones de entre 2.500 y 4.000 mm/año.

ad C. El análisis y la evaluación de "Los mapas en escala 1:20.000 de uso potencial de Nueva Guinea" permiten apreciar las dificultades que plantea el pretender extrapol ar los conceptos de capacidad de uso potencial o de clases de uso, sin un análisis edafológico y ecológico pertinente, que permita adecuar el sistema de clasificación utilizado a las condiciones edafológicas y ecológicas de los ecosistemas del trópico húmedo.
El mapa geomorfológico preparado por el Instituto Geográfico de Catastro y Recursos Naturales y la compañía Westinghouse es una interpretación de imágenes de radar similar a un mapa de subpaisajes, que caracteriza las condiciones del relieve y su disección (en los sitios más accidentados), sin determinar el origen ni la litología superficial. En las áreas planas induce el origen aluvial. Este mapa es importante como punto de partida para la comprobación en el campo y para establecer las correlaciones geológicas y geomorfológicas existentes.

3.2 Uso y manejo potencial de la tierra

La propuesta de Catastro e Inventario de Recursos Naturales (marzo de 1973) considera las siguientes clases de uso potencial:

1. Agricultura de subsistencia, ganadería intensiva y bosques: 60% del área

2. Agricultura de subsistencia, ganadería extensiva y bosques: 5% del área

3. Arroz, pasto alemán, cacao, hule, palma africana y bosque: 10% del área

4. Caña de azúcar, piña, yuca (manejo especial), ganadería extensiva y bosques: 20% del área

6. Bosques: 5% del área

Los estudios de uso potencial se elaboraron a partir de informaciones sobre la física y la química del suelo, la profundidad, la pendiente, el drenaje y el grado de fertilidad (media y baja). Los suelos de fertilidad media son los Entisoles, Inceptisoles, Mollisoles y Alfisoles. Los suelos de fertilidad baja son los Ultisoles (como los typic Tropudults, orthoxic Tropudults y plinthic orthoxic Tropudults).

El problema de esta clasificación es que no considera la agricultura de subsistencia (1, 2, 3, y 4) como no sostenible y que no propone un uso que garantice el reciclaje de nutrientes.

- Se recomienda la ganadería intensiva en los suelos de baja fertilidad como los Ultisoles (typic Tropudults, orthoxic Tropudults); tal recomendación constituye un error, porque estos suelos - por efecto del pisoteo - pierden capacidad productiva por compactación y erosión del horizonte productivo (A).

- La ganadería extensiva se ubica en suelos de vocación forestal o aptos para cultivos perennes por su fertilidad y se recomienda para pendientes del 15 al 50%; esta recomendación no
tiene en cuenta el efecto de la escorrentía, la erosión, la degradación de los pastos y la disminución de la producción ganadera.

La recomendación de uso forestal sólo en pendientes superiores al 50% induce a deforestar casi toda el área escarpada para usarla posteriormente en ganadería.

En resumen, el uso y manejo agropecuario de la tierra del área de Nueva Guinea debe ser revisado a la luz de la experiencia de uso (1965-1990), retomando las experiencias de otros países con suelos tropicales húmedos para recuperarlos, conservarlos e incluso mejorarlos.
4. CLIMA, PAISAJES, SUELOS Y USO

4.1 Clima

La única estación meteorológica del área se encuentra en el municipio de Nueva Guinea. En GOMEZ et al. (1990) se presenta la información climatológica correspondiente a nueve años de registro para esa estación. La precipitación anual oscila entre los 2300 y los 3100 mm, con un promedio de 2600 mm. Los meses más secos son febrero y marzo, con un promedio de 100 mm de lluvia, muy por debajo de la evapotranspiración potencial (255 mm); por lo general entre mayo y diciembre hay exceso de lluvias.

De acuerdo con la información disponible, el promedio anual de la precipitación aumentaría de unos 2000 mm en el oeste hasta unos 3500 mm en el este. Cuanto más seca es el área, más riguroso es el verano.

Las temperaturas son tropicales y el promedio para Nueva Guinea está entre los 23 y los 26 °C. La variación dentro del área está regida por diferencias en la precipitación anual y la altitud, que en la Cordillera de Yolaina alcanza los 880 msnm.

4.2 Paisajes y suelos

Durante el reconocimiento de la zona se hizo evidente que el tipo de roca (la litología), el relieve y la edad del suelo son los factores que han tenido mayor impacto sobre el desarrollo de los paisajes y los suelos del área.

Estos factores explican en gran parte la variación en el paisaje y en los suelos y por lo tanto se deben considerar en forma especial al hacer un relevamiento cartográfico.

El clima, con 2.000 mm de precipitación anual en el oeste del área y hasta 3.500 mm en el este, también es un factor de diferenciación; la hidrología se relaciona con el tipo de roca y con el relieve.

A efectos de este estudio, los paisajes se diferenciaron con base en el tipo de roca, la edad de los suelos (estado de lixiviación) y el relieve. En los estudios anteriores no se había tenido en cuenta la litología.

En los Cuadros 4.1 y 4.2 se resumen los paisajes identificados y los tipos de suelos comprendidos en cada paisaje. Ambos son muy preliminares y es preciso verificarlos en el campo; sin embargo pueden servir como base para trabajos futuros.
Cuadro 4.1 Unidades cartográficas, características de los suelos y uso recomendado

<table>
<thead>
<tr>
<th>Unidad cartográfica</th>
<th>Suelos código</th>
<th>Pendiente</th>
<th>Posición geom.</th>
<th>Fertilidad</th>
<th>Drenaje</th>
<th>Riesgo erosión</th>
<th>Uso recomendado</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ao</td>
<td>3.2</td>
<td>5-10</td>
<td>I + L</td>
<td>BAJA</td>
<td>B</td>
<td>M</td>
<td>AF/F</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>0-5</td>
<td>V</td>
<td>BAJA</td>
<td>I</td>
<td>L</td>
<td>AF/F</td>
</tr>
<tr>
<td>Ds</td>
<td>2.2.2</td>
<td>20-30</td>
<td>P</td>
<td>MEDIA</td>
<td>B</td>
<td>A</td>
<td>FG/F</td>
</tr>
<tr>
<td></td>
<td>2.1.2</td>
<td>30-60</td>
<td>C + L</td>
<td>MEDIA</td>
<td>B</td>
<td>MA</td>
<td>PVS</td>
</tr>
<tr>
<td>Rol</td>
<td>3.1</td>
<td>0-3</td>
<td>I</td>
<td>BAJA</td>
<td>I</td>
<td>L</td>
<td>FG/F</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>3-8</td>
<td>I</td>
<td>BAJA</td>
<td>I</td>
<td>M</td>
<td>AF/F</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>0-1</td>
<td>V</td>
<td>MEDIA</td>
<td>P</td>
<td>L</td>
<td>FG/F</td>
</tr>
<tr>
<td>Ro2</td>
<td>3.2</td>
<td>3-8</td>
<td>L</td>
<td>BAJA</td>
<td>I</td>
<td>M</td>
<td>AF/F</td>
</tr>
<tr>
<td>Rf</td>
<td>3.1</td>
<td>5-10</td>
<td>L</td>
<td>BAJA</td>
<td>I</td>
<td>M</td>
<td>AF/F</td>
</tr>
<tr>
<td></td>
<td>2.3.2</td>
<td>10-15</td>
<td>L</td>
<td>BAJA</td>
<td>B</td>
<td>A</td>
<td>FG/F</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>1-5</td>
<td>V</td>
<td>MEDIA</td>
<td>P</td>
<td>L</td>
<td>FG/F</td>
</tr>
<tr>
<td>Rc</td>
<td>2.1.1</td>
<td>15-30</td>
<td>L + C</td>
<td>MEDIA</td>
<td>B</td>
<td>M</td>
<td>GF/F</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>5-15</td>
<td>L</td>
<td>ALTA</td>
<td>B</td>
<td>M</td>
<td>Aa/AF</td>
</tr>
<tr>
<td>Rs</td>
<td>2.1.2</td>
<td>>30</td>
<td>C + L</td>
<td>BAJA</td>
<td>B</td>
<td>M</td>
<td>PVS</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>15-30</td>
<td>P</td>
<td>BAJA</td>
<td>I</td>
<td>A</td>
<td>PVS</td>
</tr>
<tr>
<td>Bo1</td>
<td>1.1</td>
<td>0-10</td>
<td>I + L</td>
<td>ALTA</td>
<td>B</td>
<td>L</td>
<td>Aa/AF</td>
</tr>
<tr>
<td>Bo2</td>
<td>2.3.1</td>
<td>3-10</td>
<td>L</td>
<td>BAJA</td>
<td>B</td>
<td>M</td>
<td>AF/F</td>
</tr>
<tr>
<td>Bf</td>
<td>2.3.1</td>
<td>8-15</td>
<td>L</td>
<td>BAJA</td>
<td>B</td>
<td>A</td>
<td>GF/F</td>
</tr>
<tr>
<td></td>
<td>2.3.1</td>
<td>0-8</td>
<td>I</td>
<td>BAJA</td>
<td>B</td>
<td>L</td>
<td>AF/F</td>
</tr>
<tr>
<td>Bc</td>
<td>2.3.1</td>
<td>8-30</td>
<td>L+C+I</td>
<td>BAJA</td>
<td>B</td>
<td>A</td>
<td>FG/F</td>
</tr>
<tr>
<td>Bs1</td>
<td>2.3.1</td>
<td>>30</td>
<td>C + L</td>
<td>BAJA</td>
<td>B</td>
<td>M</td>
<td>PVS</td>
</tr>
<tr>
<td></td>
<td>2.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bs2</td>
<td>2.3.1</td>
<td>>30</td>
<td>C + L</td>
<td>BAJA</td>
<td>B</td>
<td>M</td>
<td>PVS</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>15-30</td>
<td>L + P</td>
<td>ALTA</td>
<td>B</td>
<td>A</td>
<td>AF/F</td>
</tr>
<tr>
<td>Bs3</td>
<td>2.3.1</td>
<td>>30</td>
<td>L</td>
<td>BAJA</td>
<td>B</td>
<td>M</td>
<td>PVS</td>
</tr>
</tbody>
</table>

Notas: (1) La primera letra representa la litología: A: brechas y lava andesíticas; D: grano diorita; R: brechas; B: lava basáltica. La segunda letra indica el relieve: o: ondulado; f: fuertemente ondulado; c: colinado; s: socavado.

(2) Código de la clasificación de suelos presentada en el Cuadro 4.2.

(3) Posición geomorfológica: I: interfluviu; C: cresta; L: ladera; P: pendiente baja; V: valle.

(4) Drenaje: B: bueno; I: imperfecto; P: pobre.

(6) Uso recomendado (ver Cuadro 4.3).
Cuadro 4.2 Leyenda preliminar de los suelos

1. Moderadamente bien a bien drenados y fértiles

1.1 Los Laureles: profundo, arcilloso, sobre roca basáltica (Andic/Typic Hapludoll)
1.2 El Porvenir: moderadamente profundo, franco arcilloso, sobre brechas (Typic Hapludoll)
1.3 Providencia: moderadamente profundo, arcilloso con grava, sobre roca fresca basáltica (Mollic Eutropept/Typic Hapludoll)

2. Moderadamente bien a bien drenados y moderadamente a poco fértiles, ligeramente ácidos

2.1 Poco profundo hasta moderadamente profundo
 2.1.1 Montevideo: franco arcilloso, con grava, sobre brechas (Ultic Tropudalf)
 2.1.2 Los Angeles: muy poco profundo, sobre roca
2.2 Profundo sobre roca relativamente fresca
 2.2.1 Escobar: arcilloso, sobre basalto (Oxic Dystropept)
 2.2.2 El Infiernito: arcilloso, sobre grano-diorita (Typic Dystropept)
2.3 Muy profundo, rojo arcilloso, sobre saprolita con CIC* baja (poco fértiles).
 2.3.1 Nueva Guinea: sobre basalto (Rhodic Kandiudults)
 2.3.2 La Plata: con Plinthita (gley) dentro de los 150 cm superficiales (Plinthic Kandiudults)

3. Suelos arcillosos con gley o plinthita dentro de los 50-100 cm, imperfectamente drenados, ácidos y con CIC baja

3.1 Talolinda: pardo oscuro (Plinthaquic Rhodudult)
3.2 San Antonio: rojo oscuro (Plinthaquic Rhodic Kandiudult)
3.3 Verdún: sobre breccias andesíticas (Plinthaquic Rhodic Hapludox)

4. Suelos pobremente drenados con gley y/o plinthita dentro de los 50 cm

4.1 La Cabanga: sobre brechas (Plinthic Tropaquult)

* CIC Capacidad para retener cationes
Cuadro 4.3 Tipos de uso recomendados para la zona de estudio

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>Agricultura alternativa.</td>
</tr>
<tr>
<td>AF</td>
<td>Sistema agroforestal de cultivos anuales, semiperennes y perennes.</td>
</tr>
<tr>
<td>GF</td>
<td>Sistema pecuario forestal de forrajes, gramíneas y leguminosas, cultivos forestales para madera (postes, durmientes y leña) y cultivos medicinales.</td>
</tr>
<tr>
<td>FG</td>
<td>Sistema silvo pastoril (ganado, pasto y árboles).</td>
</tr>
<tr>
<td>F</td>
<td>Forestal para madera: postes, durmientes y leña.</td>
</tr>
<tr>
<td>PVS</td>
<td>Protección de la vida silvestre, de los suelos y de las aguas:</td>
</tr>
<tr>
<td></td>
<td>reservas forestales</td>
</tr>
<tr>
<td></td>
<td>áreas de protección de la vida silvestre</td>
</tr>
<tr>
<td></td>
<td>parques nacionales</td>
</tr>
<tr>
<td></td>
<td>ecoturismo</td>
</tr>
</tbody>
</table>

* Paisajes sobre roca basáltica (B en Figura 4.1)

Los nombres tentativos de los suelos (Cuadro 4.2) se tomaron de algún pueblo o río cercano al sitio donde se describió el perfil; se extrajeron muestras de algunos sitios para hacer un análisis químico.

En el primer nivel de la leyenda los suelos se caracterizan por el drenaje, en el segundo nivel, por el grado de fertilidad y en el tercero, por la profundidad. Los suelos se clasificaron tentativamente según la SOIL TAXONOMY (1975). A continuación se describen los paisajes y los suelos identificados.

Los suelos de estos paisajes son bien drenados y bien estructurados debido a la permeabilidad de la roca.

Bo2, Bf, Bc y Bs están sobre coladas de lava basáltica muy antiguas, probablemente de la era terciaria; el relieve varía de ondulado en el caso de Bo2 hasta socavado en el caso de Bs. Debido a las fuertes pendientes, Bs tiene suelos moderadamente profundos y pedregosos. En pendientes fuertes puede haber suelos de alta fertilidad (por ej. el suelo Providencia en el paisaje Bs2) porque los procesos de erosión y de formación de suelos son...
tan dinámicos que el suelo se rejuvenece constantemente. Bo2 y Bc tienen suelos profundos y lixiviados sobre roca meteorizada.

Bf está sobre una colada más reciente, probablemente de la era pleistocénica, que se manifiesta en suelos menos lixiviados y de mayor fertilidad. El paisaje de Bo, Bf y Bc se caracteriza por interfluvios planos hasta ondulados, bordeados por pendientes más fuertes hacia los valles.

* Paisajes sobre brechas

Las brechas constituyen una roca muy sólida de grava o piedra angular sobre una masa más fina que impide la infiltración. El agua tiende a escurrir lateralmente sobre el contacto del suelo y la roca o, cuando llueve mucho, sobre la superficie. En consecuencia, los suelos instalados en pendientes de hasta un 15% son de imperfectamente hasta mal drenados. Los procesos de escorrimento y de erosión superficial son siempre más pronunciados en estos paisajes que en los paisajes sobre roca basáltica. Hay cuatro paisajes sobre brechas: Ro, Rf, Rc y Rs.

Ro es un paisaje ondulado, en posición relativamente baja, con interfluvios casi planos e imperfectamente drenados y valles con suelos mal drenados. Aparentemente hay sitios de origen aluvial cuyos suelos son más fértiles.

Rf tiene sitios con una pendiente más pronunciada que Ro, donde los suelos son un poco mejor drenados.

Rc, al oeste de Los Laureles, tiene pendientes de hasta un 30%, con suelos bien drenados pero moderadamente profundos hasta poco profundos, de mediana hasta buena fertilidad.

Rs, con pendientes de hasta un 60%, se observó cerca de Los Angeles, donde los suelos son muy poco profundos hasta moderadamente profundos. Los más profundos sufren de drenaje impedido.

* Paisaje sobre roca y brechas andesíticas (Ao)

Se parece al paisaje de brechas. La topografía es ondulada, con suelos imperfectamente drenados y muy lixiviados.
* Paisajes sobre roca grano/diorítica (Ds)*

Consiste en una serie de colinas con pendientes escarpadas que se destacan sobre los paisajes cercanos. La roca parece muy dura y resistente a la meteorización, ya que hay partes sin suelo o con suelos poco profundos.

4.3 Restricciones de los suelos para el uso agropecuario

En el Cuadro 4.3 se resumen los tipos de uso recomendados para el área de Nueva Guinea. El riesgo de erosión se presenta en el Cuadro 4.1.

Fertilidad química

En el Cuadro 4.1 se aprecia que la mayoría de los suelos son de baja fertilidad. En estos suelos, la fertilidad está restringida a la capa superficial oscura (horizonte A). El horizonte B subyacente es bajo en contenido de nutrientes. El alto contenido de hierro y de aluminio provoca una alta retención de fósforo, por lo que la disponibilidad de P para los cultivos es baja. El suelo Los Laureles, localizado sobre una colada de basalto pleistocénico, constituye una excepción. Otros suelos con alta fertilidad están en pendientes bastante fuertes, con peligro de erosión (El Porvenir, Providencia y Infiernito) o sufren de mal drenaje (Talolinga, Cabanga).

Los suelos menos fértiles son los suelos profundos sobre brechas o lava andesítica.

Fertilidad física

Los suelos de los paisajes sobre basalto son muy porosos. Cuando la estructura de la superficie se compacta, se restringe la infiltración de agua. Esto ocurre siempre en los potreros por el pisoteo de los animales y en los suelos con cultivos anuales por el impacto de la lluvia. En El Chasmolar se mencionó compactación por el uso de maquinaria pesada.

En los suelos sobre brechas (paisajes Ro y Rf), el subsuelo es muy compacto; esta condición se manifiesta en la abundancia de manchas rojas y blancas (plinthita) formadas por efecto del estancamiento del agua. Cuanto menos profunda esté la plinthita, peor es el drenaje y menor la infiltración del agua de lluvia.

Por estas razones, los paisajes de brechas son muy susceptibles al escurrimiento, sobre todo cuando el suelo se usa
para potrero. El exceso de escorrentamiento provoca "picos" en el caudal de los ríos e inundaciones en las partes bajas.

Peligro de erosión

En el Cuadro 4.1 se estima el peligro de erosión para los suelos bajo potreros y cultivos de labranza. Evidencias de erosión, como deslizamientos de tierra y carcavas, se observaron especialmente en el paisaje Bs, cerca de la Colonia José Benito Escobar y de Providencia; en estos sectores predomina el pastoreo.

Debido a la mala infiltración que se da en los suelos de los paisajes sobre brechas, cabe prever riesgos de erosión aún en pendientes menos fuertes.

4.4 Uso actual y uso recomendado

En el uso actual predominan el pastoreo extensivo y la siembra de cultivos anuales como maíz, arroz y frijoles. Los rendimientos fueron altos durante los primeros años posteriores a la deforestación, pero luego bajaron rápidamente. Por lo general, después de seis años, en la mayoría de los suelos los rendimientos del maíz son muy bajos a menos que se fertilice, y aún así, no se alcanzan los rendimientos originales (Gómez, et al. 1990). Es obvio que bajo estas condiciones, los sistemas de uso vigentes en la zona no son sostenibles; debido a ello, los finqueros venden sus tierras para deforestar otras áreas, donde la historia vuelve a repetirse.

Es evidente que el uso potencial propuesto en otros estudios (Sección 3.2) es muy optimista y conduce a la degradación del paisaje y del suelo, ya que no considera la necesidad de que el sistema de uso mantenga la fertilidad del suelo.

En el Cuadro 4.1 se dan algunas recomendaciones para el uso sostenido de las diferentes unidades cartográficas; se trata de una propuesta que aún no ha sido comprobada.
5. ESTUDIOS EN MICROZONAS

5.1 Introducción

Las microzonas de estudio se seleccionaron de acuerdo con los siguientes criterios:

- Representatividad en cuanto a las unidades de suelos y paisajes descritas en el Capítulo 4.
- Representatividad en cuanto a zonas de pluviosidad.
- Posibilidad de probar sistemas de uso y de manejo bajo diferentes condiciones físicas (diferencias de grado y de tipo de limitación).
- Posibilidad de extrapolación.
- Núcleo de investigación multidisciplinaria.
- Accesibilidad.

5.2 Objetivos

El tamaño de las microzonas debe ajustarse a los objetivos del estudio; para aspectos de caracterización del suelo y del paisaje y de manejo, un área de 25 km² parece suficiente para cubrir la variabilidad.

Para diseñar propuestas sobre la sostenibilidad de los tipos de uso y de los sistemas de finca, deben considerarse también los aspectos agronómicos (GOMEZ et al., 1990) y socioeconómicos, como la rentabilidad a largo plazo de los tipos de uso o la comercialización de los productos agrícolas. Esto requiere el uso de un enfoque multidisciplinario, con concepciones ecológicas y socioeconómicas integradas.

5.3 Descripción de las microzonas

A continuación se resumen las características de las microzonas y los estudios propuestos; en la Sección 5.4 se describen los estudios propuestos en forma más detallada.

5.3.1 Microzonas con suelos bien drenados y no muy escarpados

A. De baja fertilidad y menor precipitación

El Chasmolar:

- suelos con buen drenaje y precipitación moderada (2.000 a 2.500 mm anuales)
- la roca es basáltica, la topografía es ondulada y escarpada en las colinas, donde hay un alto riesgo de erosión
- los suelos contienen poca materia orgánica y son fijadores de fósforo.

Posibilidades de estudio: Sistemas de manejo adecuados y adaptados a la zona (Cuadro 5.1):
- sistemas agroforestales (A) y el efecto de la maquinaria sobre las propiedades físicas del horizonte superficial
- sistemas silvopastoriles (B)
- sistemas con bosques (C) para proteger crestas y pendientes fuertes.

B. De baja fertilidad y mayor precipitación

La Esperanza: Zona de comprobación de resultados de El Chasmolar, bajo condiciones de mayor precipitación
- suelos rojos, muy profundos, arcillosos, basálticos, con poca materia orgánica y fijadores de fósforo
- bien drenados y permeables, con una precipitación intermedia para la región (2.500 - 3.000 mm anuales)
- topografía plana e inclinada.

Posibilidades de estudio: Comprobación de sistemas de uso A y B (Cuadro 5.1) en condiciones de mayor precipitación que en El Chasmolar.

C. De mayor fertilidad

Los Laureles: Zona de mayor potencial agrícola
- suelos de 80-120 cm de profundidad, arcillosos, basálticos con un alto contenido de materia orgánica
- bien drenados, porosos y permeables, con planicies interfluviales y menos precipitación (2.000 - 2.500 mm).

Posibilidades de estudio: Toda clase de sistemas de uso y su rentabilidad y sostenibilidad. Además, los sistemas A (agroforestal) y B (silvopastoral) para probar su comportamiento bajo circunstancias de mayor fertilidad del suelo.

5.3.2 Microzonas con suelos bien drenados y en posición escarpada

A. De baja fertilidad

San Miguel: Zona crítica de protección
- suelos rojos, arcillosos, basálticos, con poca materia orgánica, fijadores de fósforo
- buen drenaje y mayor precipitación (3.000 - 3.500 mm)
- con problemas de erosión por deslizamientos y erosión en carcavas
- topografía inclinada a escarpada.

Posibilidades de estudio: Adaptación del uso de la tierra al riesgo de erosión:

- sistemas silvopastoriles que incluyan estudio edáfico para adaptar el manejo de los suelos (B)
- reforestación en zonas críticas (crestas, valles de río, pedimentos fuertes) sistema C
- estudio de susceptibilidad a la erosión en relación con los sistemas de uso A y B y las prácticas tradicionales en la zona.

B. De mayor fertilidad

Providencia: Zona de protección con agricultura en laderas escarpadas

- suelos fértilles, oscuros, franco-arcillosos, de 50-100 cm de profundidad, con un buen contenido de materia orgánica
- buen drenaje y alta precipitación (3.000 - 3.500 mm)
- topografía escarpada.

Posibilidades de estudio:

- sistema C, reforestación con especies forestales bien adaptadas a la zona, en laderas escarpadas y en crestas susceptibles a la erosión
- sistema A, agroforestería en laderas escarpadas con suelos fértilles para mantener la producción agrícola en los sitios con alto riesgo de erosión.

5.3.3 Microzonas con suelos imperfectamente drenados

A. De mediana fertilidad

Talolinga: Zona de baja presión agrícola

- suelos arcillosos, profundos, imperfectamente drenados, con gley, poca materia orgánica y fertilidad media a baja, sobre brechas y material aluvial
- topografía plana a ondulada.

Posibilidades de estudio:

- sistemas de uso adaptados a las condiciones de mal drenaje
- uso de árboles para mejorar el drenaje (sistema B)
- efecto del pastoreo (pisoteo del ganado) sobre las condiciones físicas y sistemas de uso y de manejo para evitar la compactación del suelo y la degradación del pasto.

Los Pintos: Zona de mayor presión agrícola, para comparar resultados con Talolinga

- suelos arcillosos, imperfectamente drenados, con gley, bajo contenido de materia orgánica, derivados de brechas volcánicas poco permeables
- topografía fuertemente ondulada.

B. De baja fertilidad

Verdún: zona crítica

- suelos de baja fertilidad, con poca materia orgánica y problemas de drenaje, derivados de roca o de brechas andesíticas
- topografía ondulada.

Posibilidades de estudio (Cuadro 5.1): cómo se adaptan los sistemas agroforestales (A) a condiciones de muy baja fertilidad y cómo contribuyen al reciclaje y al manejo de los nutrientes.

5.4 Estudios dentro de las microzonas

Se sugiere llevar a cabo los siguientes estudios:

- inventario (detallado) y caracterización de los suelos y de su potencial
- estudio comparativo de los sistemas de uso y de manejo.

Los resultados de estos estudios pueden servir de base para hacer un inventario de suelos y paisajes y un plan de ordenamiento para toda la zona.

5.4.1 Inventario detallado (1:10.000) de los suelos de las microzonas

Consiste en una caracterización y un relevamiento cartográfico de las series de suelo y de sus fases. Las series deben ser uniformes en cuanto a material parental (roca), drenaje, secuencia de horizontes y características. Cada serie (o suelo) clasificada de acuerdo con la Taxonomía de Suelos (SOIL SURVEY STAFF, 1975) recibirá un nombre local. Se establecerán las fases de las series para poder considerar las diferencias en cuanto a pedregosidad, pendiente y profundidad del suelo. Las series se describirán según el sistema de la FAO y se caracterizarán física y químicamente.
Los paisajes se deben analizar al tiempo que se caracterizan los suelos para poder establecer la relación entre los suelos y las características fisiográficas.

Para la comprobación en el campo es esencial disponer de fotografías aéreas a escala detallada (1: 10,000) que no hay actualmente. La confiabilidad del mapa debe ser comprobada mediante el cotejo con las experiencias de los campesinos, en visitas a las fincas y/o por medio de talleres; también se deberá obtener información sobre el comportamiento de cada suelo. El mapa y los criterios de clasificación se modificarán de acuerdo con los resultados obtenidos en la fase de comprobación.

Esta fase requiere la participación de los campesinos y también de técnicos de otras disciplinas, especialmente sociología. La información reunida en las visitas a las fincas y en los talleres apoyará la formulación de propuestas para estudios más específicos (Sección 5.4).

El mapa detallado de los suelos es esencial para la planificación de estudios específicos, el procesamiento de datos y la transferencia de resultados a sitios con características similares fuera de la microzona.

5.4.2 Estudios comparativos de sistemas de uso y manejo

Tal como se señaló en el capítulo anterior, en las zonas con menos potencial agrícola es donde más se observa la desaparición de fincas con cultivos y el aumento del área bajo pastos. Aparentemente, los rendimientos disminuyen a medida que aumenta el tiempo de uso agrícola y obligan al pequeño finquero a vender su tierra a ganaderos. Debido a esta situación, la superficie bajo pastos aumenta y la frontera agrícola avanza, porque los campesinos sin tierra buscan tierras nuevas, adentrándose en el bosque tropical.

La ganadería por lo general es extensiva y los rendimientos por hectárea son bajos. Además, el pisoteo de los animales compacta los suelos y provoca un aumento en el escorrentía superficial; a consecuencia de ello, la aridez del área aumenta y se producen picos en el caudal de los ríos que hacen que el riesgo de inundación durante los temporales sea mayor. También aumenta el peligro de deslizamientos y de erosión en carcaças en los paisajes con pendientes fuertes.

Teniendo en cuenta lo anterior, se proponen algunos sistemas de uso cuya sostenibilidad todavía debe ser comprobada.

Descripción de los estudios
En el Cuadro 5.1 se resumen los sistemas de uso propuestos así como las investigaciones que deberán realizarse, por microzona.

A. Sistemas de uso agroforestales

La mayor parte del área está cubierta por suelos rojos y arcillosos de baja fertilidad (Cuadro 4.1). Los nutrientes se concentran básicamente en el horizonte A (capa superficial oscura); la descomposición de la materia orgánica causa un flux en la disponibilidad de nutrientes. La tasa de descomposición depende del clima y de la calidad y cantidad de materia orgánica (SWIFT et al., 1979; SWIFT, 1984).

Los cambios en el clima son muy determinantes en el caso de los cultivos anuales, sobre todo si el suelo está descubierto y hay mucho sol, pues la descomposición es más rápida. Cuando llueve, una gran proporción de los nutrientes liberados se lava, pues una planta pequeña no es capaz de absorber todos los nutrientes. En el caso de los cultivos perennes los cambios de clima les afectan menos; además, el sistema radicular es más profundo y absorbe mejor los nutrientes.

Otro factor importante es la cantidad y la calidad de la materia orgánica con que el sistema de uso nutre la capa superior del suelo. Es por eso que los sistemas de uso más promisorios deben de incluir un componente perenne con un sistema radicular bien desarrollado que produzca material orgánico de buena calidad (normalmente, árboles fijadores de nitrógeno).

Descripción del sistema

A. El sistema agroforestal

En este sistema, los árboles o arbustos son un factor permanente, pues proporcionan sombra y materia orgánica de buena calidad que fertiliza el suelo. También proporcionan leña y madera, que escasean en el área. Los anuales o semiperennes pueden ser cultivados entre el componente arbóreo (A1). Para estimular el sistema se puede aplicar fósforo, que es el factor más deficiente en el suelo.

El otro sistema propuesto (A2) considera solamente cultivos perennes con o sin árboles fijadores de nitrógeno. Ambos sistemas pueden compararse con el sistema tradicional de sólo anuales (A3).
<table>
<thead>
<tr>
<th>Sistemas de uso</th>
<th>Objetivos</th>
<th>Monitoreo de</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Arboles fijadores de nitrógeno con anuales</td>
<td>Mantener nivel de fertilidad, de materia orgánica y rentabilidad del sistema de uso.</td>
<td>-Niveles de nutrientes y pH. -Descomposición de M.O, actividad biológica y estructura -Disponibilidad de agua -Rentabilidad.</td>
</tr>
<tr>
<td>A2 Perennes (ej. café, cacao, plátano) con o sin sombra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 Anuales (comparación con A1 y A2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1 Silvopastoriles con árboles fijadores de N con y sin aplicación de P.</td>
<td>-Mantener el nivel de fertilidad -Evitar degradación del pasto y evitar compactación.</td>
<td>-Registrar nivel de M.O. y nutrientes. -Composición y rendimientos de pasto. -Características físicas e hidrológicas.</td>
</tr>
<tr>
<td>B2 Pasto con leguminosas con y sin P. variando el manejo del ganado</td>
<td>-Evitar escurrimiento de agua y erosión.</td>
<td></td>
</tr>
<tr>
<td>B3 Sistema tradicional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 Bosque de explotación selectiva para madera, para leña y protección</td>
<td>-Proteger posiciones críticas, dentro del paisaje y la cuenca -Formas de explotación en pendientes fuertes. -Proveer fuentes de leña y madera.</td>
<td>-Escorrentía -Erosión -Infiltración de agua -Caudal de los ríos -Productividad de los sistemas.</td>
</tr>
<tr>
<td>C2 Sistemas como A1 y A2 adaptadas a laderas con pendientes fuerte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3 Comparación con condición natural (pasto, cultivos).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 Bosque</td>
<td>-Mejorar el drenaje. -Proveer fuentes de leña y madera -Disminuir escorread.</td>
<td>-Regimen de humedad -Caudal de los ríos.</td>
</tr>
<tr>
<td>D2 Pasto/silvopastoril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Investigación

Hay mucha literatura que describe las ventajas de los sistemas agroforestales y silvopastoriles en términos teóricos, pero escasean los trabajos que sustenten los resultados con datos experimentales. No se sabe si los casos exitosos descritos y analizados en la literatura pueden ser aplicados bajo condiciones edáficas diferentes.

Por este motivo se enfatiza aquí la necesidad de una investigación "de monitoreo" que analice los cambios que ocurren en el suelo y su productividad bajo los sistemas propuestos. Se deben ponderar los factores edáficos que cambian a corto plazo y que permiten una evaluación de los procesos de degradación o de recuperación de la fertilidad:

(1) tasa de descomposición y acumulación de materia orgánica
(2) actividad biológica, biomasa y diversidad de la macrofauna
(3) nivel de nutrientes (pH y otros)
(4) disponibilidad de agua
(5) estado del cultivo y rendimientos
(6) susceptibilidad a la erosión (permeabilidad y estabilidad estructural)

Todos estos factores deben analizarse en función del sistema de uso; se recomienda utilizar la metodología descrita en el manual del TSBF (ANDERSON e INGRAM, 1987).

Es evidente que el factor económico es muy importante para los campesinos a la hora de adoptar cualquier sistema de uso; por lo tanto, el estudio debe incluir los aspectos de productividad y rentabilidad de los sistemas.

B. Sistemas de pastoreo y silvopastoriles

Según UGARTE (1981), la degradación de los pastos es un problema grave en esta zona; él lo atribuye a la compactación causada por el pisoteo y a la escasez de nutrientes, sobre todo de fósforo y nitrógeno. Según este autor, se podría disminuir el efecto del pisoteo aplicando una buena rotación y pastoreo nocturno además de fertilización con P.

Aquí se proponen dos sistemas (B1 y B2) que deberán investigarse, comparándolos con el sistema tradicional (B3).

B1 Se introduce un componente arbóreo, preferiblemente fijador de nitrógeno. Los árboles actúan como (1) fuente de nutrientes por reciclaje (la poda), como (2) fuente de materia orgánica, como (3) reguladores del clima en el
suelo y como (4) proveedores de sombra. Se puede aplicar P para estimular el crecimiento del pasto.

B2 Se establece pasto sin árboles pero con leguminosas para incrementar el contenido de nitrógeno, con o sin aplicación de fósforo

B3 Es el sistema tradicional, sin mejoramiento del pasto y sin árboles.

La investigación debería estudiar y evaluar los siguientes aspectos:

1) características físicas (permeabilidad, porosidad y estructura del horizonte superficial)
2) características hidrológicas (infiltración y escurrimiento del agua)
3) disponibilidad y nivel de nutrientes en la capa superficial del suelo
4) actividad biológica (ver sistema A)
5) composición, calidad y productividad de los pastos.

C. Bosque protector y de explotación limitada

Salvo unos pocos árboles esparcidos, en el área deforestada ya no hay bosque; en áreas de mucho relieve, esta situación provoca varios problemas. El primero es que el escurrimiento superficial aumenta (por la compactación), lo que incrementa el caudal de los ríos; debido a ello, el peligro de inundaciones y deslizamientos cerca de los cauces fluviales también aumenta. Además, se forman carcazas que disecan y erosionan el área. También se observó erosión en las áreas con pendientes fuertes (por sobrepastoreo).

En sitios mal drenados, ciertos tipos de árbol extraen y evapan mucha agua, mejorando las condiciones de drenaje. Otro problema derivado de la desaparición del bosque es la escasez de leña y de madera para la construcción (GOMEZ et al., 1990). Los ensayos con áreas de bosque permiten estudiar todas estas aplicaciones, por lo que tienen un objetivo múltiple.

Para establecer bosques dentro de los paisajes susceptibles a la erosión se deben seleccionar las áreas críticas (Cuadro 4.1): las crestas de colinas, las espaldas (transición de planicie a ladera) y las laderas próximas al caudal de los ríos.

En relación con el grado de explotación y el tipo de bosque a establecer se recomienda estudiar los siguientes aspectos:

1) características hidrológicas (precipitación, intensidad
de la luvia, infiltración y escorrimento) y
tasas de erosión.

También se debe estudiar el manejo de los bosques como fuente de leña y de madera y/o como reserva biológica.

D. Bosque en áreas imperfectamente drenadas

En Talolingo y el Pinto, una superficie considerable del área es de imperfecta a mal drenada. En las transiciones de interfluvios a valles - pero también en el subsuelo - fluye mucha agua por escorrentía. El agua empeora el drenaje en los valles y aumenta el riesgo de erosión para las laderas. Por lo tanto, se sugiere sembrar árboles con una tasa alta de evaporación en los bordes de los valles. Como en el caso del sistema C, estos bosques pueden servir como fuentes de madera, de leña y/o como reserva biológica.

5.5 Extrapolación de los resultados de las microzonas

Los estudios desarrollados en las microzonas deben servir de base para la cartografía y el ordenamiento de toda el área.

Las actividades de fotointerpretación y las comprobaciones de campo permiten extrapolar la información de las microzonas. La unidad de mapeo debe ser el paisaje, caracterizado por sus componentes tal como se describen en el Cuadro 4.1. La escala del trabajo deberá ser de 1:100.000. Los paisajes no representados por las microzonas deberán ser estudiados con más detalle.

Con base en los resultados de los estudios en las microzonas se pueden formular recomendaciones sobre los sistemas de uso más factibles y sostenibles para cada suelo y para cada paisaje. El mapa a escala 1:100.000 permite extrapolar los datos hacia toda la zona, creando una base para su ordenamiento.

Como metodología se sugiere seguir el sistema de información desarrollado por el Programa Zona Atlántica (CATIE-UAW-MAG) en Costa Rica. Este sistema, que toma el paisaje y el suelo como base, permite elaborar un plan para un uso sostenido del área.
6. CONCLUSIONES Y RECOMENDACIONES

6.1 Condiciones físicas (datos básicos)

- Hay gran variabilidad en cuanto a clima, drenaje, edafología y potencial de suelos. Los principales problemas son la baja fertilidad química de la mayoría de los suelos, el drenaje y el peligro de erosión en las pendientes fuertes.

- Los datos disponibles son insuficientes o carecen de rigor, lo que no permite subdividir adecuadamente el área.

- En este estudio se identificaron ocho microzonas representativas en cuanto a clima, paisaje y suelos, las que deben tomarse como núcleos de inventario y de investigación (multidisciplinaria).

Para cada microzona se recomiendan las siguientes actividades:

2) Hacer un estudio detallado de los suelos (escala 1:10.000) con base en fotografías aéreas de la misma escala y luego comprobarlo en el campo. El área mínima de cada microzona debe ser de unos 20 a 25 km², cubriendo los paisajes más representativos (Cap. 4).

3) Para establecer las microzonas se debe hacer una foto-interpretación y un reconocimiento rápido (en escala 1:100.000) de los paisajes, acorde con los criterios descritos en el Cap.4 (litología, geomorfología, edad y suelos).

4) Los resultados del estudio en las microzonas deben ser comprobados y confrontados con la experiencia de los campesinos.

5) Después de la fase de comprobación debe hacerse un reconocimiento de suelos y paisajes en escala 1:100.000 para toda el área.

6.2 Estudios específicos

Las prácticas actuales de uso y manejo de cultivos empobrecen rápidamente la mayoría de los suelos. Es preciso
establecer y evaluar sistemas de uso y de manejo sostenible para evitar:

- la venta de fincas a ganaderos
- la expansión de la ganadería extensiva
- la deforestación del bosque por los finqueros que buscan tierras más fértiles
- el agotamiento de la fertilidad de los suelos y la erosión en los paisajes con mucha pendiente.

Teniendo en cuenta esto, se recomienda:

1. Instalar ensayos de campo en fincas en todas las microzonas y usarlos como punto de referencia para establecer comparaciones con los sistemas existentes, a fin de evaluar:

 a. Los sistemas agroforestales y su capacidad de mantener la fertilidad y controlar la erosión.

 b. Los sistemas silvopastoriles y sus efectos (degradación o recuperación) sobre la calidad del suelo y del pasto.

 c. Los bosques de protección y su capacidad de detener la erosión y proveer madera y leña.

2. Estudiar la sostenibilidad de los sistemas propuestos desde el punto de vista agronómico, económico y sociológico.

6.3 Presentación y divulgación de los resultados

De la fase final del estudio, en la cual deben participar todas las disciplinas involucradas, debe resultar un plan para el uso sostenido del área. Esta fase incluirá los siguientes puntos:

1. Definición de los tipos de uso promisorios para cada micro-zona, suelo/paisaje.

2. Elaboración de mapas de diferentes escenarios de uso de la tierra para su divulgación.

3. Comprobación de los resultados por los extensionistas y los campesinos.

6.4 Ejecución

Para la ejecución de los inventarios y estudios propuestos puede usarse la subdivisión en módulos, donde cada módulo representa un segmento del trabajo, que puede
ser ejecutado por la institución que asuma la responsabilidad. Obviamente debe haber una institución que coordine todas las actividades y una persona en el área que se encargue de la supervisión.

A continuación se dan algunos lineamientos generales para la ejecución del trabajo en el componente de suelos.

1. Estudios de cartografía de suelos a nivel de reconocimiento y de detalle. Se recomienda que estos trabajos sean responsabilidad de la UNA (Universidad Nacional de Agronomía, Managua), que cuenta con profesores capacitados para este tipo de estudios. Sin embargo, como la mayoría de ellos no ha tenido oportunidad de adquirir experiencia en el reconocimiento de suelos a nivel de paisajes, se sugiere ofrecerles la asesoría de la UAW a través del Programa Zona Atlántica. Para fortalecer los criterios de juicio en este campo la participación de estudiantes de ambas instituciones sería una ventaja extra.

2. Estudios específicos

La supervisión, el mantenimiento y la coordinación de los ensayos deberían estar en manos de un instituto de la zona, por ejemplo, La Esperanzita, que ya tiene mucha experiencia en estudios agroforestales.

También podría aprovecharse la vasta experiencia de instituciones como CATIE (Costa Rica) y CIAT (Colombia) con sistemas agroforestales y silvopastoriles. La escuela de Ciencias Forestales de la UNA también ha ganado experiencia en agroforestaría, por lo que parte de la investigación podría ser ejecutada por ellos en coordinación con las instituciones locales.

La investigación en suelos puede ser desarrollada por personal y estudiantes de la UNA junto con estudiantes y profesores de la UAW a través del Programa Zona Atlántica (Costa Rica), que también estudia la sostenibilidad de los sistemas.

3. Presentación de resultados

El Programa Zona Atlántica ha ganado mucha experiencia en cuanto a los sistemas de información de suelos y paisajes y a su combinación con otros tipos de datos para presentarlos como sistemas de información geográficos. Por lo tanto, podría asesorar a la UNA en el desarrollo de un sistema de información de suelos y en la presentación geográfica de los datos.
7. REFERENCIAS

Instituto Agrario de Nicaragua, 1969. Estudio de suelos de baja intensidad del Proyecto Rigoberto Cabezas.

Instituto Geográfico del Catastro y Westinghouse, 19???. Mapa geomorfológico del área?

