ESTUDIO DE LAS SUSTANCIAS GIBERELINOIDES EN SEMILLAS MADURAS Y
PLANTAS NORMALES Y ENANAS DE FRIJOL (Phaseolus vulgaris L.)
var. MEXICO-80 R.

Por

VICTOR PROAÑO SALAS

Instituto Interamericano de Ciencias Agrícolas de la OEA
Centro de Enseñanza e Investigación
Turrialba, Costa Rica

Setiembre, 1967
ESTUDIO DE LAS SUSTANCIAS GIBERELINOIDES EN SEMILLAS MADURAS Y PLANTAS NORMALES Y ENANAS DE FRIJOL (Phaseolus vulgaris L.) var. MEXICO-80 R.

Tesis

Presentada al Consejo de la Escuela para Graduados como requisito parcial para optar al grado de

Magister Scientiae

en el

Instituto Interamericano de Ciencias Agrícolas de la OEA

APROBADA: George Greene, Ph.D. Consejero

Carl C. Moh, Ph.D. Comité

Elemer Bornemissa, Ph.D. Comité

Antonio Fichinat, Ph.D. Comité

Setiembre, 1967
A mis Padres:

cuyo cariño, adhesión y espíritu de sacrificio, me han acompañado durante la vida.
AGRADECIMIENTOS

El autor desea expresar su agradecimiento al Dr. George Greene Consejero Principal, por su asesoramiento y acertada dirección en el trabajo de tesis. A los miembros de su Comité Consejero Drs. Carl C. Moh, Elemer Bornemisza y Antonio Pinchinat por la ayuda y sugerencias que permitieron culminar con éxito esta investigación. Al Ing. Fausto Maldonado por la revisión y corrección del borrador de la tesis. A los profesores, compañeros y demás personal del Instituto que en una u otra forma colaboraron para que continuara adelante en los estudios.

El autor también expresa su agradecimiento al Programa de Energía Nuclear (NEP), del Instituto Interamericano de Ciencias Agrícolas por la beca otorgada para realizar los estudios de postgrado.
BIOGRAFÍA

El autor nació en la ciudad de Quito, Ecuador en el año de 1940. Sus estudios primarios y secundarios los realizó en su ciudad natal.

Ingresó en la Facultad de Agronomía de la Universidad Central del Ecuador en el año de 1958, habiéndose graduado de Ingeniero Agrónomo en enero de 1964.

Durante el año de 1961 colaboró como asistente de los departamentos de Fitopatología y Entomología en el Servicio Cooperativo Interamericano de Agricultura (SCIA). En 1962 comenzó su trabajo en el Instituto Nacional de Investigaciones Agropecuarias del Ecuador en calidad de asistente del Departamento de Fitopatología, cargo que desempeñó hasta la fecha de ingreso en el IICA. En 1964 fue, además, nombrado Instructor en el Departamento de Protección de plantas de la Facultad de Ingeniería Agronómica de la Universidad Central.

A partir de setiembre de 1965 ingresó al Instituto Interamericano de Ciencias Agrícolas en calidad de estudiante graduado, terminando sus estudios en agosto de 1967.
CONTENIDO

<table>
<thead>
<tr>
<th>DEDICATORIA</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRADECIMIENTO</td>
<td>iv</td>
</tr>
<tr>
<td>BIOGRAFÍA</td>
<td>v</td>
</tr>
<tr>
<td>CONTENIDO</td>
<td>vi</td>
</tr>
<tr>
<td>LISTA DE CUADROS</td>
<td>ix</td>
</tr>
<tr>
<td>LISTA DE FIGURAS</td>
<td>xi</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>REVISIÓN DE LITERATURA</td>
<td>3</td>
</tr>
<tr>
<td>I. Historia</td>
<td>3</td>
</tr>
<tr>
<td>II. Estructura química de las giberelinas</td>
<td>4</td>
</tr>
<tr>
<td>III. Presencia de las giberelinas en las plantas superiores</td>
<td>7</td>
</tr>
<tr>
<td>IV. Acción de elongación que presentan las giberelinas</td>
<td>12</td>
</tr>
<tr>
<td>V. Pruebas biológicas</td>
<td>13</td>
</tr>
<tr>
<td>VI. Purificación de los extractos e identificación por cromatografía de capa fina</td>
<td>16</td>
</tr>
<tr>
<td>MATERIALES Y MÉTODOS</td>
<td>17</td>
</tr>
<tr>
<td>I. Siembra de semillas de plantas normales y enanas cultivadas en solución Hoagland N° 2</td>
<td>17</td>
</tr>
<tr>
<td>II. Extracción de las sustancias giberelinoides</td>
<td>18</td>
</tr>
<tr>
<td>A. Extracción de las sustancias giberelinoides de semillas maduras</td>
<td>18</td>
</tr>
<tr>
<td>1) Extracción fraccionada utilizando acetato de etilo y butanol</td>
<td>18</td>
</tr>
<tr>
<td>2) Extracción con metanol</td>
<td>21</td>
</tr>
<tr>
<td>B. Extracción de las sustancias giberelinoides en los tallos y hojas de plantas en desarrollo</td>
<td>22</td>
</tr>
</tbody>
</table>
III. Determinación de la actividad de los extractos conteniendo sustancias gibberelinoides 23
 A. Senescencia de las hojas de Rumex obtusifolius L. ... 23
 B. Endosperma de trigo .. 25

 1) Determinación de azúcares reductores 26
 2) Ingredientes y preparación del reativo de Somogyi .. 27
 3) Ingredientes y preparación del reativo de Nelson .. 27

 C. Elongación de las plantas enanas de frijol var. México-80 R. 28

IV. Determinación de las posibles sustancias gibberelinoides presentes en las fracciones de los extractos crudos 29

RESULTADOS ... 31

 I. Diferencia en el crecimiento de plantas normales y enanas de frijol, cultivadas en solución Hoagland N° 2 ... 31

 II. Ensayos biológico para determinar la actividad de los extractos crudos obtenidos de semillas maduras ... 35

 A. Senescencia de las hojas de Rumex obtusifolius L. ... 35
 B. Liberación de azúcares reductores en el endosperma de trigo 43
 C. Reacción de los mutantes enanos de frijol al aplicarles extractos de semillas maduras. 49

 III. Ensayos biológicos para determinar la actividad de los extractos crudos obtenidos de tallos y hojas de plantas en desarrollo 54

 A. Senescencia de las hojas de Rumex obtusifolius L. ... 54
 B. Liberación de azúcares reductores en el endosperma de trigo 55
 C. Elongación de los mutantes enanos de frijol al aplicarles extractos de tallos y hojas ... 56
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. Separación de los extractos en cromatografía de</td>
<td>57</td>
</tr>
<tr>
<td>capa fina</td>
<td></td>
</tr>
<tr>
<td>DISCUSION Y CONCLUSIONES</td>
<td>59</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>68</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>69</td>
</tr>
<tr>
<td>LITERATURA CITADA</td>
<td>70</td>
</tr>
<tr>
<td>Cuadro Nº</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Diferencias en longitud de los tallos, raíces y entrenudos de las plantas normales y enanas</td>
</tr>
<tr>
<td>2</td>
<td>Datos correspondientes al peso de las plantas y raíces del frijol normal y enano</td>
</tr>
<tr>
<td>3</td>
<td>Peso fresco y seco de discos de igual área tomados de hojas cotiledonales de plantas de frijol normal y enano</td>
</tr>
<tr>
<td>4</td>
<td>Valores de absorción de luz medidos en el espectrofotómetro a 665 μm. Se usan discos de hojas de R. obtusifolius L. y concentraciones conocidas de ácido giberélico</td>
</tr>
<tr>
<td>5</td>
<td>Valores de absorción de luz medidos en el espectrofotómetro a 665 μm. Se usan discos de hojas de R. obtusifolius L. y extractos crudos de semillas maduras</td>
</tr>
<tr>
<td>6</td>
<td>Actividad en concentración aproximada de ácido giberélico manifestada por los extractos crudos de semillas maduras, sobre los discos de hojas de R. obtusifolius L.</td>
</tr>
<tr>
<td>7</td>
<td>Valores de absorción de luz medidos en el espectrofotómetro a 665 μm. Se usa endosperma de trigo y concentraciones conocidas de ácido giberélico</td>
</tr>
<tr>
<td>8</td>
<td>Valores de absorción de luz medidos en el espectrofotómetro a 660 μm. Se usa endosperma de trigo y extractos crudos obtenidos de semillas maduras</td>
</tr>
<tr>
<td>9</td>
<td>Actividad en concentración aproximada de ácido giberélico manifestada por los extractos crudos de semillas maduras sobre endosperma de trigo</td>
</tr>
<tr>
<td>10</td>
<td>Valores correspondientes a la latura, longitud del hipocotilo y de los entrenudos de las plantas enanas luego de haber sido tratadas</td>
</tr>
<tr>
<td>Cuadro N°</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>11</td>
<td>Diferencias en longitud entre los tallos, el hipocotilo y los entrenudos de las plantas normales y enanas</td>
</tr>
<tr>
<td>12</td>
<td>Valores de absorción de luz medidos en el espectrofotómetro a 665 µm. Se usan discos de R. obtusifolius L. y extractos crudos de tallos y hojas</td>
</tr>
<tr>
<td>13</td>
<td>Valores de absorción de luz medidos en el espectrofotómetro a 660 µm. Se usa endosperma de trigo y extractos crudos de tallos y hojas de plantas normales y enanas</td>
</tr>
<tr>
<td>14</td>
<td>Valores de R correspondientes a las diversas manchas de los extractos separados en cromatografía de capa fina</td>
</tr>
<tr>
<td>Figura N°</td>
<td>Descripción</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Estructura química de las giberelinas que se producen en forma natural</td>
</tr>
<tr>
<td>2</td>
<td>Representación gráfica de la actividad del ácido giberélico en los ensayos de R. obtusifolius L. y endosperma de trigo</td>
</tr>
<tr>
<td>3</td>
<td>Regresión lineal correspondiente a los valores de absorción de luz al utilizar hojas xde R. obtusifolius y varias concentraciones de ácido giberélico</td>
</tr>
<tr>
<td>4</td>
<td>Regresión lineal correspondiente a los valores de absorción de luz al utilizar endosperma de trigo y varias concentraciones de ácido giberélico</td>
</tr>
<tr>
<td>5</td>
<td>Valores correspondientes a la absorción de luz en el espectrofotómetro a 665 μm, expresados en porcentaje con respecto al testigo. Se utilizan discos de hojas de R. obtusifolius tratados con extractos crudos de semillas maduras</td>
</tr>
<tr>
<td>6</td>
<td>Valores correspondientes a la absorción de luz en el espectrofotómetro a 660 μm, expresados en porcentajes con respecto al testigo. Se utiliza endosperma de trigo y extractos crudos de semillas maduras</td>
</tr>
<tr>
<td>7</td>
<td>Altura total alcanzada por las plantas enanas, después del tratamiento con los extractos crudos obtenidos de semillas de plantas normales y enanas</td>
</tr>
<tr>
<td>8</td>
<td>Longitud del hipocotilo y de los dos primeros entrenudos de las plantas enanas, después del tratamiento con extractos crudos obtenidos de semillas maduras de plantas normales y enanas.</td>
</tr>
</tbody>
</table>
INTRODUCCION

La acción que presentan las giberelinas sobre el crecimiento y, sus cambios cuantitativos experimentados durante el desarrollo de los tejidos, sugiere que ellas son componentes del sistema natural que regula el crecimiento de las plantas. Sus efectos estimulantes son muy pronunciados sobre el tallo, pero también pueden, en algunas circunstancias provocar cambios en las hojas, flores y frutos (41).

De las giberelinas la más conocida es el ácido giberélico, el cual al aplicarse sobre las plantas, provoca cambios en el crecimiento principalmente de las plantas enanas. En especial acelera el alargamiento de las variedades enanas de algunas especies tales como arveja (Pisum sativum), frijol (Phaseolus vulgaris) y maíz (Zea mays), mientras a las formas altas de las mismas especies les afecta poco (45).

Esto hace pensar que posiblemente en las plantas altas la producción natural de giberelinas sea mayor que en las plantas enanas, por lo cual los dos tipos de plantas reaccionan de diferente manera.

Un mejor conocimiento acerca de la calidad y cantidad de las giberelinas presentes en las plantas altas y enanas, así como del lugar donde se originan, ayudaría a comprender en mejor forma el complejo mecanismo fisiológico que controla el crecimiento de las plantas.

Con el fin de aclarar en algo los puntos mencionados anteriormente se inició el presente trabajo que comprende:
1. Obtención de extractos crudos de semillas maduras, tallos y hojas de plantas de frijol enano y normal.

2. Estimación de la cantidad de sustancias giberelinoides presentes en dichos extractos mediante tres ensayos biológicos.

3. Separación e identificación aproximada de las posibles giberelinas presentes en los extractos crudos, mediante la técnica de partición de los extractos en cromatografía de capa fina.

4. Estudio del efecto de las fracciones de los extractos crudos de plantas normales y enanas, sobre las plantas de frijol enano.
REVISION DE LITERATURA

I. Historia

La actividad que presentan ciertas substancias extraídas de los hongos para promover o inhibir el crecimiento de las plantas, fue estudiada desde hace 30 o 40 años por un pequeño grupo de botánicos japoneses. En el mundo occidental no se dio ninguna importancia a este estudio sino hasta el año 1950, época en la cual un grupo de investigadores del Departamento de Agricultura de los Estados Unidos de Norte América, y otro grupo de investigadores británicos confirmaron los trabajos realizados por los japoneses y continuaron incrementando las investigaciones sobre esta materia.

Kurasawa (22), fue el primero en demostrar que estas sustancias de crecimiento eran producidas por un hongo parasito de las plantitas de arroz. Dicho hongo es Gibberella fujikuroi (Saw.) Ws., y produce en el arroz la enfermedad denominada "Bakanae" que significa que una planta es vana.

El nombre de "Giberelinas" con que se conoce a las sustancias de crecimiento, con propiedades similares a las que se obtienen de G. fujikuroi, se debe a un grupo de investigadores de la Universidad de Tokio entre los cuales se cuentan Yabuta, Sumiki y Hayashi (51).

Yabuta y Hayashi en 1939 (57), aislaron dos sustancias cristalinas con actividad sobre el desarrollo de las plantas y las denominaron Giberelina A y Giberelina B, respectivamente. Posteriormente se encontró un tercer compuesto biológicamente activo al cual se denominó Giberelina C, que se obtuvo por acidificación de la
Giberelina A.

En los Estados Unidos de Norte América el primer trabajo sobre las giberelinas fue realizado por Mitchel y Angel (30), quienes desarrollaron el hongo en un medio de cultivo y rociaron un filtrado de este medio sobre plantitas de frijol, logrando que estas alcanzaran un crecimiento excesivo.

En 1955 un grupo dirigido por Stodola (50), describió una manera de obtener giberelina cruda en forma cristalina. Simultáneamente, investigadores del Imperial Chemical Industries, dirigidos por Brian (4), lograron obtener una sustancia promotora del crecimiento con una actividad muy alta. Esta sustancia con propiedades biológicas similares a la Giberelina A, es, sin embargo, distinta y se le conoce con el nombre de ácido giberelico. Esta fue la primera sustancia de crecimiento obtenida en forma pura.

II. Estructura Química de las Giberelinas

Según Larsen (24), las sustancias de crecimiento pueden definirse como compuestos orgánicos que a bajas concentraciones estimulan, inhiben o modifican cualitativamente el crecimiento. De acuerdo con esta definición, encontramos cuatro tipos de sustancias de crecimiento: auxinas, citoquininas, giberelinas e inhibidores o antigiberelinas.

Actualmente se conocen trece tipos de giberelinas que van des de la AG₁ hasta la AG₁₃. Las nueve primeras giberelinas se encuentran caracterizadas y diferenciadas perfectamente en base a su estructura y actividad biológica (19). Las cuatro giberelinas
restantes han sido estudiadas recientemente y se ha llegado a determinar su estructura química.

Las trece giberelinas difieren ligeramente en su estructura química, pero biológicamente se comportan en forma muy variada (3). La diferencia estructural radica en la base de los constituyentes colocados en la posición de los carbonos 7 y 8 del esqueleto modelo de las giberelinas (41). Estas diferencias se pueden apreciar claramente en la figura 1.

En la primera columna de esta figura 1, se encuentran los compuestos que tienen un grupo metílico en el carbono 8 y ninguna sustitución en el carbono 7. La segunda columna incluye aquellas con un grupo hidroxilo en el carbono 7, y la tercera columna corresponde a aquellas giberelinas que tienen en el carbono 8 tanto el grupo hidroxilo como el grupo metilo y son insustituídos en la posición del carbono 7. AG_{12} y AG_{13} no contienen el anillo de lactona y por esta razón se presentan aparte del grupo.

Los grupos horizontales muestran variación en el anillo A, pero ninguna variación en su actitud o comportamiento sobre la fisiología de las plantas.

La actividad biológica que presentan estas giberelinas es muy variada así; las giberelinas A_1, A_3, A_4 y A_7 son las más activas para promover la elongación de los tallos de arvejas enanas, A_2, A_5, A_6, A_8 y A_9 presentan una actividad menor. Por otro lado para promover la elongación de los tallos de frijol las giberelinas que mayor actividad presentan en orden decreciente son A_3 y A_4; menos activas son A_5, A_6, A_1, A_7, A_9 y A_2, mientras A_8 no muestra ninguna
Fig. 1. Estructura química de las giberelinas que se producen en forma natural.
actividad. La más conocida de las giberelinas y producida en forma comercial es el ácido giberélico (\(\text{AG}_3\)). (55).

Phinney y West (43), dividen a la familia de las giberelinas en dos clases de acuerdo a la actividad biológica que presentan. Las giberelinas propiamente dichas están formadas por aquellos compuestos con estructura química específica y un espectro muy amplio de actividad biológica. Las sustancias tipo giberelinas están formadas por aquellos compuestos con una estructura química que no están determinada perfectamente y que presenta límites más restringidos de actividad biológica. Estas se denominarán ahora sustancias giberelinoides.

De acuerdo con estos términos, las giberelinas pueden definirse como compuestos que tienen un esqueleto común y presentan actividad biológica ya sea estimulando la división de las células, la elongación de las mismas o ambos procesos a la vez. Sustancias giberelinoides son aquellas que presentan una configuración química diferente o desconocida, y cuya actividad biológica similar se registra únicamente sobre un mutante enano apropiado (43).

III. Presencia de las Giberelinas en las Plantas Superiores

Las giberelinas se descubrieron originalmente como productos de un hongo parásito de una planta, y las investigaciones modernas han demostrado ahora que las giberelinas son constituyentes normales de las plantas superiores (19). El primero en verificar esta hipótesis fue Radley en 1956 (44), cuando aplicó el extracto proveniente de las plantas normales de arveja sobre plantas enanas de
la misma variedad notando que estas últimas alcanzaban una mayor altura que la que presentaban corrientemente.

Muchas plantas superiores presentan una proporción bastante baja de giberelinas. Jones y Phillips (17), comprobaron que 100 yemas de girasol contienen únicamente 0,001 mg de giberelinas.

Kato y Purves (19), mostraron la primera evidencia de las giberelinas en las gimnospermas, ya que las investigaciones anteriores no habían tenido éxito y únicamente se sabía de la existencia de las giberelinas en angiospermas, algunos granos de polen, feóficas y ciertos hongos. Marth, Audia y Mitchell (27), informaron sobre el efecto producido por el ácido giberélico en 49 plantas diferentes incluyendo muchas especies de árboles.

El contenido de giberelinas en las semillas de algunas plantas varía con el tiempo y período de desarrollo; así, Carr y Skene (5), han encontrado una íntima relación entre el estado de desarrollo de las semillas de *Phaseolus vulgaris* L., y su contenido de giberelinas. Corcoran y Phinney (9), manifiestan que las giberelinas se encuentran comparativamente en mayor proporción en las semillas tiernas que en las semillas maduras. Es necesario considerar también que pueden existir cambios en el contenido de más de una giberelina durante la maduración de las semillas, y posiblemente también en el contenido de antigiberelinas (8).

Ritzel, en 1957 (47), encontró que la actividad por semilla, así como la actividad por gramo de semilla, aumenta con la edad de las mismas y hay evidencia de la pérdida de actividad únicamente después que la semilla ha alcanzado el tamaño normal. De esta
manera se ha logrado trazar un modelo cuantitativo sobre los cambios de las giberelinas activas durante el desarrollo de las semillas.

Radley en 1958 (45), manifestó que el alto poder de actividad que presentan las semillas tiernas de frijol desciende en las semillas maduras a un nivel comparable con el crecimiento de la planta. Así para semillas de 2 - 6 mm de largo la actividad equivalente fue de 0,25 µg de ácido giberélico por gramo de peso fresco de semilla.

Mitchell et al. (31), en condiciones de invernadero encontraron que la cantidad de hormonas solubles en éter aumentaba en las semillas de frijol después de los cuatro días siguientes a la polinización, alcanzando su máximo valor a los 7 - 8 días para decrecer rápidamente a los 15 días. El máximo de hormonas extraídas se relaciona más estrechamente con el desarrollo de las vainas que con el desarrollo de las semillas.

Ogawa en 1963 (38), estudió los cambios en el contenido de sustancias giberelinoides en las semillas y vainas maduras de Lupinus luteus, y encontró que la cantidad de estas sustancias en las semillas aumenta notablemente en el primer estado de desarrollo, cuando el crecimiento de las semillas y vainas es muy lento. El máximo valor en concentración de sustancias como las giberelinas se manifiesta cuando el peso seco de las semillas alcanza un valor del 10 por ciento y en las vainas el 28 por ciento del peso que alcanzan estos tejidos cuando se han desarrollado completamente.
West y Phinney (53), obtuvieron material activo al trabajar con extractos de algunas plantas, extraídos con éter, entre los cuales sobresalieron las semillas de *Equinosistis* que produjeron material equivalente en actividad a 5 μg de ácido gibberélico.

Hayashi y Rappaport (15), al trabajar con extractos de papa obtenidos en varios solventes orgánicos a pH 7,5 y a pH 2,5 encontraron varias sustancias con actividad similar a la de las giberalinas. La fracción neutra fue activa sobre las arvejas enanas pero no sobre ciertos mutantes de maíz. El extracto en cloroformo presentó actividad sobre las arvejas enanas y sobre dos mutantes de maíz d₃ y d₅, pero no sobre d₁. Además manifiestan que en los extractos, las zonas más activas de la fracción neutra se encuentran dentro de los valores de Rₓ 0,4 – 0,5 y 0,6 – 0,7. La fase cloroformo F II presenta actividad en valores de Rₓ 0,5 – 0,6 y 0,6 – 0,7. Mencionan también, dichos autores, que la extracción clásica de las sustancias gibberelinoides se realiza a un pH bajo, pero que sin embargo, la actividad de la fracción neutra es notablemente significativa si la extracción se realiza a un pH alto.

Phinney (43), manifiesta que las giberalinas AG₃, AG₁ y AG₂ muestran actividad relativa del 100 por ciento, 50 por ciento y 10 por ciento respectivamente sobre los mutantes de maíz d₁, d₂, d₃ y d₅. Dos materiales cristalinos aislados de semillas de frijol y denominados factor I y factor II muestran mucha similitud con las giberalinas. El factor I parece ser similar a AG₁, mientras que el factor II difiere de las giberalinas fungosas conocidas. Con extractos provenientes de semillas de arveja se obtuvo también un
factor que tuvo las mismas propiedades biológicas que el factor frijol II.

Marth et al. (27), estudiaron varios géneros y especies de plantas y encontraron que estas reaccionaban de diversa manera cuando se les aplicaba ácido giberélico. La respuesta más clara fue la elongación del tallo. Las plantas de frijol pinto (P. vulgaris) respondieron bien, aun a concentraciones de 0.001 ppm de ácido giberélico, mientras el pino blanco (Pinus strobus) respondió en forma muy baja a ésta y otras concentraciones más altas de ácido giberélico.

En caña de azúcar (Saccharum officinalis), Most y Vlitos (34), encontraron que las cañas jóvenes que crecen en la humedad, contienen ínfimas cantidades de sustancias giberelinoides, una de las cuales crecen que puede ser AG₅. Las cañas de cuatro meses de edad contienen dos activadores del crecimiento que por sus propiedades cromatográficas, fluorimétricas y biológicas parecen ser AG₁ y AG₃. Las cañas de seis meses de edad presentan cantidades muy bajas de sustancias giberélicas.

Hashimoto y Rappaport (14), en los extractos de semillas de frijol separan a las sustancias giberelinoides de acuerdo con la actividad biológica que presentan las fracciones no ácida y ácida en acetato de etilo, al mismo tiempo que la fracción ácida en butanol. Demuestran así mismo que la actividad de la fracción no ácida se debe a sustancias neutras que se encuentran libres de sustancias acidificantes. Concluyen dichos autores que estas sustancias neutras pueden servir como una forma de reserva de las
giberelinas en las semillas secas, y que las sustancias ácidas en acetato de etilo y butanol se pueden necesitar para un desarrollo normal de las semillas de frijol.

IV. Acción de Elongación que presentan las Giberelinas

Se conoce en forma clara que las giberelinas poseen un efecto notable para estimular el crecimiento de las plantas. Las aplicaciones de giberelinas producen un alargamiento en las variedades enanas hasta alcanzar el mismo desarrollo que presentan las plantas normales.

La elongación de las células es un proceso de absorción de agua por parte de las mismas. Tres son las causas que afectan esta absorción de agua: 1) la concentración de los materiales osmóticamente activos, 2) la resistencia de la pared celular al ensanchamiento y 3) la hidrólisis del almidón. Los coleóptilos bajo la influencia de las auxinas, incrementan la concentración de materiales osmóticamente activos durante la elongación; la hidrólisis del almidón, causada por la inducción de la síntesis de amilasa al aplicar giberelinas aumenta también la concentración de azúcares incrementando de esta manera el material osmóticamente activo dentro de las células, explicándose en esta forma el porque se mantienen la concentración osmótica durante la elongación. Además se tiene que la pared celular del tejido del coleóptilo se debilita en alto grado por una acción indirecta de las auxinas. Considerando estos puntos de vista se puede esperar que las giberelinas causen elongación también por medio de estos tipos de reacción (53).
En trabajos recientes, Kurayashi y Muir (19), informan que las giberelinas inducen la formación de enzimas proteolíticas, así es de esperarse que este proceso libere triptofano que sirve como precursor del ácido indol acético. Los tratamientos con giberelinas permiten en efecto un rápido incremento de la concentración de auxinas.

Gorter (13), al trabajar con variedades enanas de arveja llegó a la conclusión de que el enanismo se encuentra en íntima relación con la luz. En otras palabras que el crecimiento de éstas plantas se encuentra reducido por la luz. Encontró también este autor que las plantas enanas de arveja son 100 veces más sensivas a la luz que las arvejas normales. Los dos tipos de plantas enanas y normales contienen AG₁ y AG₅ en proporciones más o menos iguales, pero en la luz el tejido de las plantas enanas presenta una menor respuesta a AG₅ (20).

V. Pruebas Biológicas

En la actualidad existen muchas pruebas biológicas que permiten estimar la presencia de las giberelinas en un extracto dado. En base a estas pruebas se ha logrado obtener una amplia información que permite estimar por separado la actividad de las diversas giberelinas conocidas.

En teoría el crecimiento controlado por la mutación de un solo gen, puede ser el sistema más simple para ser analizado al nivel fisiológico o bioquímico, puesto que generalmente se piensa que un solo gen actúa controlando un paso particular en el proceso
bioquímico de una sustancia necesaria para la producción del fenotipo normal (43). Las plantas en las cuales el enanismo está controlado por un solo gen presentan una gran ventaja en este tipo de estudios, ya que la naturaleza dinámica del crecimiento dentro del delicado equilibrio que guardan los organismos vivos, en ocasiones impide la experimentación directa (42).

Existen muchas plantas enanas que se utilizan con este fin entre ellas tenemos:

a) **Plantitas de maíz enano**: Los mutantes de maíz cuyo enanismo se debe a un solo gen se emplean para determinar la presencia de sustancias gibberelinoides obtenidas de extractos de plantas. Estos mutantes enanos reaccionan con cantidades tan pequeñas como 0,001 µg de AG3 por planta y aparentemente no presentan ninguna respuesta a las auxinas y citoquininas (54, 60).

b) **Plantitas de frijol enano**: Esta prueba se usa para medir la actividad biológica de las sustancias gibberelinoides obtenidas de diversas razas de *Fusarium moniliforme*. La actividad de las gibberelinas y sustancias gibberelinoides, se mide en este ensayo basándose en la elongación del tallo (30).

c) **Plantitas de arveja enana**: Se utilizan con mucho éxito estas plantas para la identificación de sustancias gibberelinoides extraídas de las plantas. En esta prueba se hacen aplicaciones del extracto sobre las hojas y yemas de las plantas, y la longitud alcanzada por el ápice se toma como medida de actividad (37, 45, 49).

d) **Hipocotilo de lechuga**: Frankland y Wareing (11),
encontraron una estimulación en el desarrollo del hipocotilo de lechuga cuando se aumentaba la concentración de ácido giberélico. Esta prueba se sugiere para extractos previamente purificados por medio de cromatografía.

e) Hipocotilo de pepino: Este ensayo descrito por Galún (12), es una prueba que presenta una respuesta específica para aquellas giberlinas que son insustituídas en el carbono 7.

f) Retardo en la senescencia de discos de hojas: Es un ensayo biológico desarrollado recientemente y se basa en detener el envejecimiento de los discos extraídos de las hojas. Es una prueba cuantitativa que nos permite determinar la cantidad de sustancias giberelinoides en base a la cantidad de clorofila retenida por las hojas tratadas con respecto a la pérdida de clorofila sufrida por el testigo (1, 55).

g) Expansión de las hojas: También ésta es una prueba cuantitativa. Humphries (16), Liberman y Johnson (26), manifiestan que la expansión de las hojas etioladas se obtiene con radiaciones de luz, pero que la luz roja produce el máximo efecto para promover la expansión de dichas hojas.

h) Endosperma de cebada: Nicholls y Paleg, en 1963 (36), llegaron a perfeccionar este ensayo en un esfuerzo más para facilitar la determinación cuantitativa de las giberlinas. Este ensayo contempla la cantidad de azúcares reducidos en estos tejidos, ya que esta cantidad es proporcional a la concentración de giberelina aplicada.
Purificación de los extractos de identificación por cromatografía

La introducción de nuevas técnicas analíticas especialmente la cromatografía de capa fina (47), ha impulsado el estudio de las giberelinas. Con anterioridad, la separación se realizaba en cromatografía de papel y se requería un tiempo largo y un equipo especial (2). Con la cromatografía de capa fina se pueden separar rápidamente las diversas sustancias giberelinoides de acuerdo con la distancia recorrida por cada una de ellas sobre la placa previamente preparada, la cual puede ser gel G de sílica o "kieselgur" (10).

El cociente obtenido al dividir el valor de la distancia recorrida por la sustancia a separarse, por la distancia recorrida por el solvente se conoce con el nombre de \(R_f \) y constituye una cifra específica que permite precisar en base a su valor si está o no presente en el cromatograma la sustancia que se busca, siempre y cuando las condiciones experimentales sean rigurosamente idénticas.

Para visualizar las sustancias giberelinoides sobre la placa del cromatograma, es necesario rociar sobre dichas placas, reactivos que hagan sobresalir las sustancias que se buscan (29). Los reactivos más usados para determinar la presencia de giberelinas y sustancias giberelinoides son ácido sulfúrico concentrado (58%); solución de ácido sulfúrico-agua (10:30); y ácido sulfúrico concentrado-etanol (95:5). Las placas se observan luego bajo rayos de luz ultravioleta.
MATERIALES Y MÉTODOS

En la presente investigación se utilizaron semillas de frijol (*Phaseolus vulgaris* L., variedad "México-80 R") provenientes unas de plantas normales y otras de plantas enanas obtenidas por mutación cuando Moh y Alán (32) irradiaron las semillas normales con 200 r. de radiación gamma de una fuente de Cesio 137.

Las semillas se sembraron en el invernadero tratando de mantener estable las condiciones de humedad y temperatura. A los tres meses, cuando las plantas alcanzaron la madurez se procedió a cosechar las nuevas semillas, las cuales se emplearon posteriormente para obtener de ellas los extractores crudos en los cuales se investigó la actividad de las sustancias gibberelínicas.

I. Siembra de semillas de plantas normales y enanas de frijol (*P. vulgaris*, var. "México-80 R"), cultivadas en solución Hoagland N° 2

En esta prueba preliminar para la determinación del comportamiento de los dos tipos de plantas, se realizaron cultivos de las mismas en medios hidropónicos.

Se tomaron frascos de cristal con capacidad de 2,5 litros y se los llenó con solución Hoagland N° 2; en la parte superior de dichos frascos, con ayuda de un soporte de madera y tapones de algodón, se colocaron cuatro semillas previamente germinadas en cámaras húmedas.

La parte correspondiente a los frascos se cubrió con bolsas de plástico de color negro y se hizo una conexión de los frascos a un
compresor de aire a fin de mantener el oxígeno en constante renovación dentro de dichos frascos. De esta manera se mantuvieron las plantas en el invernadero en condiciones de temperatura y humedad más o menos estables hasta que las plantas comenzaron a producir yemas florales. En este momento se midió la altura alcanzada por las plantas, el largo de los entrenudos y el largo de las raíces. Además, se determinó el peso fresco y el peso seco tanto del follaje como de las raíces. Para secar las muestras se usó una estufa con la temperatura graduada a 100°C. Así se mantuvieron las muestras durante 48 horas.

II. Extracción de las sustancias gibberelinoïdes

La obtención de los extractos con las sustancias gibberelinoïdes se hizo primeramente de las semillas maduras y secas de frijol (*P. vulgaris* L.), luego de los tallos y hojas de las plantas en desarrollo, crecidas en el invernadero bajo condiciones de humedad y temperatura más o menos estables.

A. Extracción de las sustancias gibberelinoïdes de las semillas maduras.

Los extractos crudos con sustancias gibberelinoïdes, se obtuvieron de las semillas maduras siguiendo dos procedimientos de extracción:

1) **Extracción fraccionada utilizando acetato de etilo y butanol:**

En este sistema de extracción se siguió el método descrito
por Hashimoto y Rappaport (14). En un "beaker" se depositaron 100 gramos de semillas maduras secas agregándose inmediatamente 150 ml de metanol al 50 por ciento; y este material fue homogenizado en un homogenizador Omni Mixer durante 5 minutos.

Las semillas homogenizadas de esta manera se pusieron en un vaso de precipitación de 400 ml y se añadió 150 ml más de metanol al 50 por ciento, se mezcló bien y se dejó en reposo durante 24 horas a 4°C. Después de este tiempo, mediante el uso de una centrifugadora Servall tipo SS - 1A se separó la parte sólida del supernadante líquido. El residuo sólido obtenido después de la centrifugación, se desechó, y el supernadante líquido más o menos 240 ml, se filtró en un embudo "buchner" sobre el cual se colocó papel de filtro WHATMAN Nº 1. La parte líquida obtenida después de la filtración se redujo de volumen utilizando la evaporación a baja presión hasta evaporar todo el metanol y dejar únicamente la fase acuosa. A esta fase acuosa se agregó agua destilada hasta obtener un volumen de 300 ml.

La fase acuosa obtenida anteriormente se ajustó a un pH 7,5 utilizando carbonato de sodio y de hidrógeno. Una vez alcanzado este pH, se adicionaron 300 ml de acetato de etilo con el objeto de que este solvente - durante 24 horas - realizara la extracción de las sustancias giberelínoides. Posteriormente la fase acuosa se separó de la de acetato de etilo con la ayuda de un embudo separador obteniéndose nuevamente los 300 ml de acetato de etilo originalmente utilizados, los cuales se depositaron en un vaso de precipitación de 600 ml y se guardaron a 4°C. A la fase acuosa resultante
se agregaron otros 300 ml de acetato de etilo con el objeto de seguir extrayendo las sustancias gibberelínoides remanentes. Por medio de un embudo separador se efectuó otra vez la separación de estos 300 ml de acetato de etilo los que se mezclaron y almacenaron junto con los otros 300 ml, aumentando la fase de acetato de etilo a 600 ml.

La nueva fase acuosa resultante se ajustó a un pH 3,0 utilizando para esto ácido fosfórico. En esta fase se volvió a extraer las sustancias gibberelínoides mediante un proceso idéntico al descrito anteriormente, pero los 600 ml de acetato de etilo a pH 3,0 se almacenaron separados de los empleados en la extracción a pH 7,5.

Después de la separación de los últimos 600 ml de acetato de etilo, se tiene nuevamente una fase acuosa que se sometió luego a la extracción de las sustancias gibberelínoides utilizando como solvente butanol en lugar de acetato de etilo. En igual forma que para los casos anteriores aquí se separó también, mediante la ayuda de un embudo separador, la fase acuosa de la butanol y los 300 ml de butanol se colocaron por separado en otro vaso de precipitación, se repitió la operación y los nuevos 300 ml de butanol se añadieron a los primeros completando un volumen de 600 ml de fase en butanol.

Siguiendo el proceso descrito se logró obtener sustancias gibberelínoides extraídas en tres fases: acetato de etilo a pH 7,5; acetato de etilo a pH 3,0 y butanol a pH 3,0. El volumen de cada fase de la extracción fue de 600 ml.
Por separado se pasaron una a una las tres fases a través de una columna de vidrio, conteniendo sulfato de sodio anhidro, a fin de extraer todo el contenido de agua que pudiera haber quedado en el solvente. Cada una de las fases se evaporó luego por separado, utilizando evaporación a baja presión y a la temperatura ambiente hasta que se alcanzó la sequedad. El residuo resultante se tomó con 10 ml de agua destilada libre de iones, y esta solución quedó lista para ser utilizada en los experimentos.

Para los extractos utilizados en cromatografía, se paró la evaporación, cuando el extracto inicial quedó reducido a 1 ml.

2) **Extracción con metanol siguiendo el método descrito por Zeevaart (59).**

En un mortero se molieron 50 gramos de semillas maduras secas, poniéndose luego dicho material en un vaso de precipitación junto con 300 ml de metanol puro. El material así procesado se dejó en reposo durante 24 horas a 4°C y al final de este período se centrífugó a fin de separar la parte sólida de la líquida. La parte líquida obtenida se evaporó siguiendo el proceso de la evaporación a baja presión y a la temperatura ambiente. El residuo resultante se tomó con 5 ml de agua destilada libre de iones y la solución obtenida quedó lista para ser utilizada en los ensayos biológicos. Para los extractos usados en cromatografía, la evaporación se paró cuando el extracto inicial se redujo a 1 ml.

Este último sistema empleado para la extracción de las sustancias giberelinoides, en este caso, no dio resultados satisfactorios,
por lo cual durante el resto del trabajo se continuó realizando las extracciones mediante el primer método descrito.

B. **Extracción de las sustancias giberelínicas en los tallos y hojas de las plantas en desarrollo.**

Para la extracción de las sustancias giberelínicas en las plantas en desarrollo se siguió el procedimiento descrito por Mc Comb y Carr (28).

En el invernadero se cultivaron dos grupos de frijoles de la variedad México-80 R, el primero con semillas provenientes de plantas normales y el segundo con semillas provenientes de plantas enanas. A los 21 días se procedió a cortar las plantas por encima de los cotiledones. Para la extracción se tomaron 750 gramos de material el que se congeló en nitrógeno líquido y luego fue triturado hasta obtener un polvo muy fino, este material, así procesado, se vertió en un recipiente que contenía 2,5 litros de agua saturada con acetato de etilo y se dejó extraer a 40°C durante una noche. La fase acuosa obtenida se filtró, mezcló con 1,5 litros de acetato de etilo puro y se dejó reposar durante seis horas; posteriormente, con la ayuda de embudos separadores se procedió a separar la fase acuosa de la de acetato de etilo.

La fase de acetato de etilo se pasó a través de una columna de vidrio conteniendo sulfato de sodio anhidro, a fin de eliminar todo el contenido de agua y luego se evaporó utilizando la evaporación a baja presión y a la temperatura ambiente hasta que se alcanzó la sequedad. El residuo resultante se tomó con 10 ml de agua
destilada libre de iones, y la solución así obtenida quedó lista para ser utilizada en los ensayos biológicos. En el caso del extracto utilizado para los cromatogramas la evaporación se paró cuando el extracto inicial se redujo a 1 ml.

III. Determinación de la actividad de los extractos conteniendo sustancias giberelinoides

La actividad de estos extractos se midió mediante pruebas biológicas:

A. Senescencia de las hojas de Rumex obtusifolius L. (55).

Este ensayo biológico se basa en la propiedad que presentan las giberelinas y sustancias giberelinoides, para retardar el envejecimiento de las hojas de R. obtusifolius L. desprendidas de la planta.

Para este trabajo se usó las hojas de plantas de Rumex propagadas en el invernadero bajo condiciones estables de temperatura y humedad. Las hojas que se utilizaron fueron las más desarrolladas, por ser estas las que mantienen una coloración uniforme. Una vez desprendidas de las plantas los pecíolos de dichas hojas se sumergieron en agua destilada contenida en un vaso de precipitación. Así se las mantuvo en un cuarto obscuro a la temperatura de 24 - 26°C, durante un período de 24 horas. Al final de este tiempo se extrajeron de las hojas pequeños discos de 38,48 mm² de superficie procurando evitar las venas principales. Para este objeto, las hojas se sumergieron en una cubeta con agua destilada y se procedió
a extraer los discos sirviéndose de un sacabocados metálico con un diámetro de 7 mm. De esta manera se consiguió uniformar el contenido de humedad de todos los discos, al mismo tiempo que se quitó los residuos de suciedad que se encontraban sobre las hojas.

Los discos extraídos de la manera ya descrita, se colocaron en grupos de a cuatro sobre un círculo de papel de filtro Whatman N° 1 de 2,5 cm de diámetro, asegurándose que los discos de hojas estaban con el envés hacia abajo. Este papel de filtro a su vez se colocó sobre un vidrio de reloj y se añadieron 0,3 ml de los extractos crudos o igual cantidad de soluciones de ácido giberélico en las diversas concentraciones por probarse. Como testigo se usó un volumen igual de agua destilada libre de iones. Cada uno de los vidrios de reloj preparados de esta manera se puso en una caja petri que contenía papel filtro humedecido con agua, a fin de mantener el ambiente saturado de humedad para que los discos no se secaran. Una vez listo todo el material fue colocado en una caja de cartón que se cerró bien y se mantuvo en un cuarto oscuro durante 4 días.

Al final de este tiempo la clorofila en el tratamiento testigo, se había perdido casi por completo y los discos presentaban una coloración amarillenta, mientras que los discos tratados con ácido giberélico presentaban diversas tonalidades de acuerdo a la concentración de ácido giberélico utilizado.

Los cuatro discos de cada una de las repeticiones se sacaron de los discos de reloj y se pusieron en tubos de ensayo con 6 ml de metanol puro; así se dejó extraer la clorofila durante 12 horas
en la obscuridad. La densidad óptica de las soluciones se midió en el espectrofotómetro a 665 m\(\mu\). La prueba con las concentraciones conocidas de ácido giberélico sirvió para construir una curva patrón con la cual se comparó la densidad óptica obtenida con los extractos crudos, a fin de atribuirles una actividad comparable en concentración a la de ácido giberélico.

De cada uno de los diversos tratamientos se hicieron 20 repeticiones.

B. **Endosperma de trigo** (*Triticum vulgare*) var "**Tiba**"

En este trabajo se siguió el sistema descrito por Nicholls y Paleg (36), pero en lugar de semillas de cebada se usaron semillas de trigo (*T. vulgare*) var. "Tiba" obtenidas en el Ministerio de Agricultura y Ganadería de la República de el Ecuador.

Las semillas de trigo utilizadas se desinfectaron previamente en una solución de agua destilada y CLOROX (Ingredient activo, Hipoclorito de sodio 5,2 por ciento por peso; ingredientes inertes 94,75 por ciento) con una concentración de 2 por ciento de clorox. En esta solución se mantuvieron sumergidas las semillas durante 24 horas, lavándolas luego con volúmenes de 100 ml de agua durante 10 veces a intervalos de media hora.

Las semillas se cortaron luego transversalmente en fracciones de 4 mm de ancho, sirviéndose de una hoja de afeitar, y se descartó el fragmento correspondiente al embrión. Las porciones de endosperma restantes se pesaron por separado en grupos de cuatro fragmentos y cada grupo se colocó en pequeños tubos de vidrio.
Posteriormente en cada tubo se depositaron 500 μg de estreptomicina y 0,5 ml de las diversas concentraciones de ácido giberélico, o 0,7 ml de extracto crudo, en lugar del ácido giberélico. En cada uno de los tubos se llevó el volumen a 1 ml utilizando agua destilada libre de iones.

Los tubos de vidrio preparados de la manera descrita se dejaron en una incubadora a la temperatura de 30°C durante 48 horas. Al final de este tiempo, en estas muestras se determinó la cantidad de azúcares reductores liberados, siguiendo el método descrito por Nelson (35).

1) **Determinación de los azúcares reductores mediante el método de Somogyi (50), con las adaptaciones realizadas por Nelson (35).**

Para esta determinación se tomó del medio circundante al endosperma tratado en la forma descrita anteriormente, una alícuota de 1 ml y se diluyó a 10 ml con agua destinada libre de iones.

A esta dilución se agregó un gramo de resina intercambiadora de iones (Amberlite IR-120H, resina fuertemente ácida, intercambiadora de cationes, grupo activo - SO₃⁻). La mezcla se agitó a intervalos de un minuto durante quince veces consecutivas y se filtró a través de un papel de filtro Whatman N° 1. De este material se tomó una alícuota de un mililitro y se colocó en un tubo de ensayo; se añadió un mililitro del reactivo de Somogyi; se agitó bien a fin de que se mezclaran completamente los dos líquidos y se cubrieron
los tubos con tapas de cristal. Inmediatamente dichos tubos se pusieron en un baño de agua hirviendo exactamente durante 10 minutos. Luego de esto se retiraron los tubos del baño de agua hirviendo y se pasaron a un baño de agua helada durante 5 minutos. Se añadió un mililitro del reactivo de Nelson, la mezcla resultante se agitó bien y se diluyó a 10 ml con agua destilada. La densidad óptica de las soluciones obtenidas se midió en el espectrofotómetro a 660 mμ.

2) **Ingredientes y preparación del reactivo de Somogyi (50)**

24 gramos de carbonato de sodio anhidro
12 " de tartrato de sodio y de potasio
16 " de carbonato de sodio y de hidrógeno
4 " de sulfato de cobre
180 " de sulfato de sodio anhidro

El carbonato de sodio y el tartrato se disolvieron en 250 ml de agua destilada. Por separado se disolvió el sulfato de cobre, el que se adicionó a la mezcla anterior añadiéndose luego el carbonato de sodio y de hidrógeno. El sulfato de sodio se disolvió en más o menos 500 ml de agua caliente y se puso a hervir a fin de expeler todo el aire. Luego de enfriar, las dos soluciones se mezclaron y se diluyó a un volumen de 1 litro.

3) **Ingredientes y preparación del reactivo de Nelson (35)**

25 gramos de molibdato de amonio
21 ml de ácido sulfúrico
3 gramos de arsénico do sodio
475 ml de agua destilada

El molibdato de amonio se disuelve en 450 ml de agua y se añade con mucho cuidado los 21 ml de ácido sulfúrico. Se mezcla bien y se añade el arsénico do sodio disuelto en 25 ml de agua. Se mezcla bien todo el material y se coloca en una incubadora a 37°C durante 24 - 48 horas, antes de utilizarlo. Este reactivo no conviene mantenerlo más de una semana porque se altera fácilmente.

C. Elongación de las plantas enanas de frijol (P. vulgaris) var. México-80 R.

Para esta prueba se emplearon semillas de plantas enanas que se germinaron previamente en cámaras húmedas. Las cámaras se confeccionaron con cajas de plástico y papel de filtro humedecido con agua destilada.

Cuando la raíz principal tuvo más o menos 1,5 cm de longitud, se las transplantó a cajones de madera conteniendo tierra esterilizada con Bromuro de Metilo. Así se dejó que las plantas crecieran hasta que las hojas cotiledonales comenzaron a abrirse. En este momento se atomizó sobre las plantas el ácido giberélico o los extractos crudos conteniendo las posibles sustancias giberelínoides.

Para la aplicación de los extractos o del ácido giberélico se usó un atomizador de Vilbiess en el cual se depositó el material por atomizarse. En el caso de los extractos crudos se los disolvió en agua de la manera ya descrita (ver extracción de las sustancias giberelínoides), se les añadió Tween 20 (es un fijador y
esparcidor del solvente sobre las hojas, lo produce la Nutritional Biochemicals Corporation), a una concentración de 0,05 por ciento, e inmediatamente se atomizó sobre las plantas a razón de 0,25 ml por planta. En cada tratamiento se usaron 6 plantas que se atomizaron en tres ocasiones a intervalos de cuatro días entre aplicación y aplicación.

La respuesta manifestada por las plantas en cuanto al color, se comenzó a apreciar a las 24 horas después de la primera atomización, y se continuó observando durante todo el tiempo que duró el experimento.

A los treinta días se midió la altura alcanzada por las plantas en cada uno de los tratamientos y se determinó el largo de los entrenudos primero, segundo y tercero. Además, se midió el área foliar de las hojas cotiledonales y de los tres foliolos de la primera hoja verdadera.

En igual forma que para los casos anteriores, en este también se preparó una curva patrón con concentraciones conocidas de ácido giberélico que variaron desde 10^{-5} p.p.m. hasta 4 p.p.m.

IV. **Determinación de las posibles sustancias giberelinoides presentes en las fracciones de los extractos crudos**

Para esta determinación se usó la técnica de cromatografía de capa fina descrita por Mc Millan y Suter (29).

Se prepararon en primer lugar placas con gel G de silica, tomando 30 gramos de gel G de silica en polvo, que se suspendieron en 65 ml de agua destilada. Con esta suspensión se cubrieron
5 placas de vidrio de 20,0 x 20,0 cm. Las placas así preparadas de dejaron secar durante una noche y se las calentó luego en un horno durante 30 minutos a la temperatura de 120°C a fin de activarlas.

Inmediatamente después de enfriar las placas se depositó sobre cada una de ellas la solución correspondiente a la fracción que se quería separar. En todos los casos se usaron 10 µg de extracto, valiéndose de una micropipeta.

Las placas así preparadas se pusieron en cámaras de vidrio conteniendo una mezcla de benzeno, n-butanol y ácido acético en las siguientes proporciones:

Benzeno 70 ml
n-butanol 25 ml
ácido acético 5 ml

Una vez que el solvente hubo recorrido una distancia de 15 cm sobre las placas éstas se sacaron de la cámara de vidrio, se dejaron secar al medio ambiente, se las atomizó con una solución de ácido sulfúrico agua (10:30) y se observó luego bajo la luz de una lámpara de rayos ultravioleta.

Todo este trabajo se realizó en los invernaderos y en los laboratorios de Fisiología Vegetal del Programa de Energía Nuclear (NEP), localizado en el Instituto Interamericano de Ciencias Agrícolas de la OEA, Turrialba, Costa Rica.
RESULTADOS

I. Diferencia en el crecimiento de plantas normales y enanas de friol (Phaseolus vulgaris, var "México-80 R")

Cultivadas en solución Hoagland No 2

Con este ensayo preliminar se pudo observar que la mayor alteración en las plantas enanas con respecto a las normales, se manifiesta en su parte aérea. Hay una gran diferencia entre la altura promedio de los tallos de las plantas normales y la de los tallos de las plantas enanas, (128,31 cm y 6,56 cm, respectivamente) mientras que la diferencia en la sección radical es mucho menor (ver cuadro 1).

Lo anterior se puede ver con más claridad si se compara la longitud que tienen el hipocotilo y los entrenudos en los dos tipos de plantas. En las plantas normales el hipocotilo es más o menos dos y media veces más grande que el de las plantas enanas. En igual forma, la longitud del primer entrenudo es cinco veces mayor en las plantas normales. La mayor diferencia se observa en el segundo entrenudo, pues éste en las plantas normales es 25 veces más grande que su homólogo correspondiente en las plantas enanas. En el mismo cuadro 1 se puede apreciar que mientras en las plantas normales la longitud promedio del tercer entrenudo es 21,50 cm, en las plantas enanas no se pudo medir este valor. Esto se debió a que no fue posible diferenciar un verdadero tercer entrenudo por el excesivo apiñamiento de las hojas y de un sinnúmero de diminutos entrenudos en este lugar.
Cuadro 1. Diferencias en longitud de los tallos, las raíces y los entrenudos de las plantas normales y enanas. Los límites de confianza están dados al nivel del 95 por ciento.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Número de Repeticiones</th>
<th>Promedio</th>
<th>Límite de confianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura de las plantas*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>128,31</td>
<td>± 11,530 cm</td>
</tr>
<tr>
<td>Enana</td>
<td>16</td>
<td>6,56</td>
<td>± 0,750 cm</td>
</tr>
<tr>
<td>Longitud de las raíces*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>27,06</td>
<td>± 1,550 cm</td>
</tr>
<tr>
<td>Enana</td>
<td>16</td>
<td>19,88</td>
<td>± 2,220 cm</td>
</tr>
<tr>
<td>Longitud del hipocotilo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>10,80</td>
<td>± 0,458 cm</td>
</tr>
<tr>
<td>Enana</td>
<td>16</td>
<td>4,24</td>
<td>± 0,195 cm</td>
</tr>
<tr>
<td>Longitud primer entrenudo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>5,15</td>
<td>± 0,186 cm</td>
</tr>
<tr>
<td>Enana</td>
<td>16</td>
<td>1,04</td>
<td>± 0,115 cm</td>
</tr>
<tr>
<td>Longitud segundo entrenudo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>8,52</td>
<td>± 0,727 cm</td>
</tr>
<tr>
<td>Enana</td>
<td>16</td>
<td>0,34</td>
<td>± 0,032 cm</td>
</tr>
<tr>
<td>Longitud tercer entrenudo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>2,15</td>
<td>---</td>
</tr>
<tr>
<td>Enana</td>
<td>-</td>
<td>-</td>
<td>---</td>
</tr>
</tbody>
</table>

* El término "planta" se usa para referirse a toda la parte que se encuentra sobre el suelo, y el término "raíces" para toda aquella parte que se encuentra debajo del suelo.
Las raíces presentan también una variación que estadísticamente es significativa, aun cuando esta diferencia no sea tan grande como la encontrada para los tallos, como puede verse en el cuadro 1. Se aprecia también que las raíces que alcanzaron mayor longitud corresponden a las plantas normales.

Las diferencias encontradas en cuanto al peso correspondiente a la parte aérea entre las plantas normales y enanas es muy grande, como puede apreciarse en el cuadro 2. Esto es lógico puesto que las plantas normales tienen más follaje. Es, sin embargo, interesante notar que la pérdida de peso al secar las muestras a la estufa, y expresarla en porcentaje, es idéntica para los dos tipos de plantas como puede verse en el mismo cuadro. En el caso de las plantas normales, la pérdida de peso es de 90,3 por ciento mientras que en las plantas enanas es de 90,4 por ciento, lo que nos indica que la proporción de agua perdida con relación al follaje es igual en los dos tipos de plantas.

Cuando se comparó el peso fresco y seco de discos de igual área extraídos de las hojas cotiledonales de plantas normales y enanas (cuadro 3), se encontró que el peso de los discos de plantas enanas era mayor que el de las plantas normales. Igual cosa aconteció con el peso seco; en el caso de los discos de plantas normales la pérdida de peso al secar las muestras a la estufa fue de 83,47 por ciento, mientras en los discos de plantas enanas fue de 81,35 por ciento.
Cuadro 2. Datos correspondientes al peso de las plantas y raíces del frijol normal y enano.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>N° de Repeticiones</th>
<th>Promedio</th>
<th>Límites de confianza**</th>
<th>Pérdida de peso al secar a la estufa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso fresco de plantas*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normales</td>
<td>4</td>
<td>48,75 ± 11,99 gr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enanas</td>
<td>4</td>
<td>9,88 ± 2,28 gr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso fresco de raíces*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normales</td>
<td>4</td>
<td>13,13 ± 3,58 gr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enanas</td>
<td>4</td>
<td>7,87 ± 1,64 gr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso seco de plantas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normales</td>
<td>4</td>
<td>4,75 ± 0,80 gr</td>
<td>90,3 %</td>
<td></td>
</tr>
<tr>
<td>Enanas</td>
<td>4</td>
<td>0,95 ± 0,20 gr</td>
<td>90,4 %</td>
<td></td>
</tr>
<tr>
<td>Peso seco de raíces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normales</td>
<td>4</td>
<td>0,69 ± 0,19 gr</td>
<td>94,7 %</td>
<td></td>
</tr>
<tr>
<td>Enanas</td>
<td>4</td>
<td>0,65 ± 0,14 gr</td>
<td>91,7 %</td>
<td></td>
</tr>
</tbody>
</table>

* El término "planta" se usa para referirse a toda la parte que se encuentra sobre el suelo, y el término "raíces" para toda aquella parte que se encuentra debajo del suelo.

** Los límites de confianza se hallan expresados al nivel del 95%.
Cuadro 3. Peso fresco y seco de discos de igual área tomados de hojas cotiledonales de plantas de frijol normal y enano.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>N° de Repeticiones</th>
<th>Área de c/disco mm²</th>
<th>Peso total repetición</th>
<th>Pérdida de peso</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seco mg</td>
<td>Fresco mg</td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
<td>19,635</td>
<td>0,337</td>
<td>----</td>
</tr>
<tr>
<td>Enano</td>
<td>2</td>
<td>19,635</td>
<td>0,749</td>
<td>----</td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
<td>44,179</td>
<td>0,861</td>
<td>----</td>
</tr>
<tr>
<td>Enano</td>
<td>2</td>
<td>44,179</td>
<td>1,631</td>
<td>----</td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>63,617</td>
<td>21,000</td>
<td>127,00</td>
</tr>
<tr>
<td>Enano</td>
<td>10</td>
<td>63,617</td>
<td>30,000</td>
<td>170,00</td>
</tr>
</tbody>
</table>

II. **Ensayos biológicos para determinar la actividad de los extractos crudos obtenidos de semillas maduras y secas**

A. **Senescencia de las hojas de Rumex obtusifolius L.**

Este ensayo sirve para medir la actividad de las sustancias giberelinoides; es un método rápido, sencillo y muy sensible si se lo utiliza poniendo cuidado y atención.

En la presente investigación se usó esta prueba para establecer la relación cuantitativa entre la actividad demostrada por las diversas fracciones de los extractos crudos obtenidos de semillas normales y la actividad de un estandar que fue el ácido giberélico, en forma de una sal de potasio con 80 por ciento de pureza y 20 por ciento de ingredientes inorgánicos.
Como base de comparación se hizo necesario construir una curva patrón utilizando concentraciones conocidas de ácido giberélico con una variación que fluctuó desde 10^{-5} ppm hasta 1 ppm. Los resultados se presentan en el cuadro 4 y en la figura 2.

En el cuadro 4 se puede ver que se obtienen porcentajes progresivos de absorción de luz, cada vez que se aplican soluciones más concentradas de ácido giberélico hasta alcanzar valores que superan al doble del porcentaje 100 considerado como testigo.

Cuadro 4. Valores de absorción de luz medidos en el espectrofotómetro a 665 μ. Se usan discos de hojas de Rumex obtusifolius L. y concentraciones conocidas de ácido giberélico.

<table>
<thead>
<tr>
<th>Concentración de ácido giberélico</th>
<th>No de Repeticiones</th>
<th>Promedio</th>
<th>Incremento respecto al testigo*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 p.p.m.</td>
<td>20</td>
<td>0,8465</td>
<td>228,08 %</td>
</tr>
<tr>
<td>10^{-1} p.p.m.</td>
<td>20</td>
<td>0,7580</td>
<td>204,17 %</td>
</tr>
<tr>
<td>10^{-2} p.p.m.</td>
<td>20</td>
<td>0,6900</td>
<td>185,85 %</td>
</tr>
<tr>
<td>10^{-3} p.p.m.</td>
<td>20</td>
<td>0,6685</td>
<td>180,06 %</td>
</tr>
<tr>
<td>10^{-4} p.p.m.</td>
<td>20</td>
<td>0,5102</td>
<td>137,44 %</td>
</tr>
<tr>
<td>10^{-5} p.m.m.</td>
<td>20</td>
<td>0,4127</td>
<td>111,17 %</td>
</tr>
<tr>
<td>Testigo</td>
<td>20</td>
<td>0,3712</td>
<td>100,00 %</td>
</tr>
</tbody>
</table>

* El incremento en porcentaje de cada uno de los tratamientos se halla relacionado al testigo considerado como 100 por ciento.
ANÁLISIS DE VARIANCIA

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Grados de libertad</th>
<th>Suma de cuadrados</th>
<th>Cuadrado medio</th>
<th>Valor de F calculado</th>
<th>Valor de F tabulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre tratamientos</td>
<td>6</td>
<td>3,869,889</td>
<td>644,918</td>
<td>140.77**</td>
<td>2,19-2,99</td>
</tr>
<tr>
<td>Dentro de tratamientos</td>
<td>19</td>
<td>113,289</td>
<td>5,962</td>
<td>1,32</td>
<td>1,68-2,06</td>
</tr>
<tr>
<td>Error</td>
<td>114</td>
<td>513,933</td>
<td>4,508</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Valor significativo al nivel del 99%.**

Nota: Para facilitar los cálculos, las cifras originales se multiplicaron por 1,000.

Esta absorción de luz se representa mediante una regresión lineal, en la cual se han calculado los valores t_b, r^2 y S'; además se representan también los límites de confianza correspondientes a cada uno de los puntos dentro de la regresión (ver figura 3).

Esta línea de regresión sirvió luego para comparar con los valores de absorción de luz presentados por los extractos crudos de las semillas y de los tallos y hojas de frijol normal y enano, atribuyéndoles así una actividad relativa comparable con cualquiera de estas concentraciones de AG_3.
Fig. 3. Regresión lineal correspondiente a los valores de absorción de luz al 100%.

Concentración de ácido gibberellico en ppm.

$\alpha = 0.7280$

$\beta = 0.7971$

$\gamma = 21.53$
La actividad de los extractos crudos de semillas maduras de frijol, medida mediante este ensayo biológico, se puede apreciar en el cuadro 5, donde se encuentran los valores de absorción de luz medidos en el espectrofotómetro.

Cuadro 5. Valores de absorción de luz medidos en el espectrofotómetro a 665 m\(\mu\). Se usan discos de hojas de *R. obtusifolius* L. y extractos crudos de semillas maduras.

<table>
<thead>
<tr>
<th>Extracto de semilla</th>
<th>Fracciones</th>
<th>Repeticiones</th>
<th>Incremento respecto al testigo</th>
<th>Promedio</th>
<th>Límites de confianza*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutra**</td>
<td>20</td>
<td>109,99 %</td>
<td>0,5145 ± 0,025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>Ácida</td>
<td>20</td>
<td>179,13 %</td>
<td>0,8455 ± 0,045</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butanol</td>
<td>20</td>
<td>200,85 %</td>
<td>0,9480 ± 0,031</td>
<td></td>
</tr>
<tr>
<td>Neutra</td>
<td>20</td>
<td>103,87 %</td>
<td>0,4902 ± 0,027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENANA</td>
<td>Ácida</td>
<td>20</td>
<td>151,69 %</td>
<td>0,7160 ± 0,041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butanol</td>
<td>20</td>
<td>186,86 %</td>
<td>0,8820 ± 0,041</td>
<td></td>
</tr>
<tr>
<td>Testigo</td>
<td>---</td>
<td>20</td>
<td>100,00 %</td>
<td>0,4720 ± 0,022</td>
<td></td>
</tr>
</tbody>
</table>

* Los límites de confianza se hallan al nivel del 95%.
** Para facilitar la exposición desde ahora a la fracción neutra en acetato de etilo se denominará fracción *neutra*, a la fracción ácida en acetato de etilo se la llamará fracción *ácida* y a la fracción ácida en butanol fracción de *butanol*.
*** Se usa como testigo agua destilada libre de iones.

En la primera parte del cuadro 5 se tiene la respuesta que presentan las tres fracciones del extracto de semillas normales. Si analizamos por separado cada una de estas fracciones, se ve
que la fracción que mayor reacción manifiesta es la de butanol, la cual adquiere valores mucho más grandes que los de las otras fracciones. Le sigue en orden descendente la fracción ácida, y finalmente, la fracción neutra que es la que menor reacción manifiesta; esta fracción neutra es la única que no se diferencia estadísticamente del testigo.

En la segunda parte del cuadro 5 se ven los valores de absorción correspondientes a las tres fracciones del extracto de semillas enañas. Estas fracciones, al igual que las de las semillas normales, presentan la misma tendencia en cuanto a la manifestación de la actividad, es decir, más activa es la fracción en butanol, le sigue la fracción ácida y finalmente la fracción neutra, que en este caso tampoco difiere del testigo.

Comparando ahora la reacción de las fracciones en los dos extractos, encontramos que las fracciones ácida y butanol, correspondientes a las semillas normales, presentan una diferencia bastante marcada con relación a las mismas fracciones en las semillas enañas. Por el contrario, la actividad manifestada por la fracción neutra en los extractos de semillas normales y enañas es estadísticamente igual. Al considerar lo expuesto anteriormente, se puede decir que esta fracción neutra parece que no tiene sustancias del tipo giberelinas, las que de estar presentes, hubieran reaccionado en forma positiva con esta prueba que es específica para las giberelinas.

Comparando los valores de absorción obtenidos con los extractos crudos y los alcanzados con las concentraciones conocidas de
ácido giberélico (cuadros 4, 5 y figura 3), se puede dar a los primeros un valor de actividad que se puede expresar en concentración aproximada de ácido giberélico.

Cuadro 6. Actividad en concentración aproximada de ácido giberélico, manifestada por los extractos crudos de semillas maduras sobre los discos de *R. obtusifolius* L.

<table>
<thead>
<tr>
<th>1. Extracto de semillas normales</th>
<th>Actividad equivalente en concentración de ácido giberélico.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fracción en butanol ----------</td>
<td>0,1 μg/ml</td>
</tr>
<tr>
<td>b. Fracción ácida ---------------</td>
<td>0,001 μg/ml</td>
</tr>
<tr>
<td>c. Fracción neutra ---------------</td>
<td>0,00001 μg/ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Extracto de semillas enanas</th>
<th>Actividad equivalente en concentración de ácido giberélico.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fracción en butanol ----------</td>
<td>0,1 μg/ml</td>
</tr>
<tr>
<td>b. Fracción ácida ---------------</td>
<td>0,0001 μg/ml</td>
</tr>
<tr>
<td>c. Fracción neutra ---------------</td>
<td>0,00001 μg/ml</td>
</tr>
</tbody>
</table>

En forma cuantitativa las diversas fracciones presentan una actividad en concentración de sustancias giberelinoides correspondientes a la respectiva actividad manifestada por las concentraciones de ácido giberélico con las cuales coinciden.
B. Liberación de azúcares reductores en el endosperma de trigo

Este ensayo biológico también es sensible para medir la actividad de las diversas sustancias giberelinoides. Implica mucha práctica hasta familiarizarse con las técnicas empleadas tanto en el tratamiento previo de las semillas, de lo cual depende que no haya contaminación posterior, como del corte y manejo inmediato que se de a las semillas.

En igual forma que para el ensayo biológico de *Rumex*, se construyó también en este caso una curva patrón utilizando ácido giberélico. Las concentraciones usadas fueron desde 10^{-5} ppm. Los resultados obtenidos pueden apreciarse en el cuadro 7 donde se registran los valores de absorción de luz obtenidos en el espectrofotómetro a 660 m\(\mu\).

Analizando los valores obtenidos y considerando al testigo como 100 por ciento, se ve que el porcentaje de absorción de luz aumenta en forma directamente proporcional a la aplicación de ácido giberélico. Esto se explica porque este ácido ayuda a liberar azúcares reductores que son justamente los que se miden en este ensayo.

Con los valores de absorción de luz se construyó una línea de regresión, al igual que para el caso del *Rumex*. Esta regresión se encuentra representada en la figura 4 y sirve para comparar con la absorción obtenida con los extractos crudos.

La actividad de los extractos de semillas maduras de plantas normales y enanas, se encuentra representada en el cuadro 8 y en
FIG. 4—REGRESIÓN LINEAL CORRESPONDIENTE A LOS VALORES DE ABSORCIÓN DE LUZ AL UTILIZAR ENDOSPERMA DE TRIGO Y VARIAS CONCENTRACIONES DE ÁCIDO GIBBERELICO.

CONCENTRACIÓN RELATIVA DE AZÚCARES REDUCIDOS

CONCENTRACIÓN DE ÁCIDO GIBBERELICO EN P.P.M.

$\beta = 12.60$

$r^2 = 0.5737$

$s' = 0.01467$
la figura 6. Aquí se aprecia que los valores correspondientes a las fracciones del extracto crudo de las plantas normales son mucho mayores en todos los casos que los correspondientes a los de las plantas enanas.

Cuadro 7. Valores de absorción de luz medidos en el espectrofotómetro a 665 μ. Se usa endosperma de trigo y concentraciones conocidas de ácido giberélico.

<table>
<thead>
<tr>
<th>Concentración de ácido giberélico</th>
<th>N° de repeticiones</th>
<th>Promedio</th>
<th>Incremento respecto al testigo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 p.p.m.</td>
<td>20</td>
<td>0,1035</td>
<td>216,75 %</td>
</tr>
<tr>
<td>10^{-1} p.p.m.</td>
<td>20</td>
<td>0,0920</td>
<td>192,67 %</td>
</tr>
<tr>
<td>10^{-2} p.p.m.</td>
<td>20</td>
<td>0,0847</td>
<td>177,49 %</td>
</tr>
<tr>
<td>10^{-3} p.p.m.</td>
<td>20</td>
<td>0,0794</td>
<td>166,28 %</td>
</tr>
<tr>
<td>10^{-4} p.p.m.</td>
<td>20</td>
<td>0,0652</td>
<td>133,65 %</td>
</tr>
<tr>
<td>10^{-5} p.p.m.</td>
<td>20</td>
<td>0,0515</td>
<td>107,85 %</td>
</tr>
<tr>
<td>Testigo</td>
<td>20</td>
<td>0,0477</td>
<td>100,00 %</td>
</tr>
</tbody>
</table>

* El incremento en porcentaje de cada uno de los tratamientos se expresa con relación al testigo considerado como 100%.

** Se usa como testigo agua destilada libre de iones.
Fig. 5 Valores correspondientes a la absorción de luz en el espectrofotómetro a 665 mu, expresados en porcentajes con respecto al testigo. Se utilizan discos de hojas de *Rumex obtusifolius* L. tratados con extractos crudos de semillas maduras.

<table>
<thead>
<tr>
<th>EXTRACTO SEMILLAS NORMALES</th>
<th>EXTRACTO SEMILLAS ENANAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>% CON RESPECTO AL TESTIGO</td>
<td></td>
</tr>
<tr>
<td>NEUTRA</td>
<td>NEUTRA</td>
</tr>
<tr>
<td>ACIDA</td>
<td>ACIDA</td>
</tr>
<tr>
<td>BUTANOL</td>
<td>BUTANOL</td>
</tr>
</tbody>
</table>

Fig. 6 Valores correspondientes a la absorción de luz en el espectrofotómetro a 660 mu, expresados en porcentajes con respecto al testigo. Se utiliza endosperma de trigo y extractos crudos de semillas maduras.
- 47 -

ANÁLISIS DE VARIANCIAS

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Grados de libertad</th>
<th>Suma de cuadrados</th>
<th>Cuadrado medio</th>
<th>Valor de F calculado</th>
<th>Valor de F tabulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre tratamientos</td>
<td>6</td>
<td>52,109,00</td>
<td>8,684,33</td>
<td>19,72**</td>
<td>2,19-2,99</td>
</tr>
<tr>
<td>Dentro de tratamientos</td>
<td>19</td>
<td>16,105,00</td>
<td>847,63</td>
<td>1,92</td>
<td>1,68-2,06</td>
</tr>
<tr>
<td>Error</td>
<td>114</td>
<td>50,213,00</td>
<td>440,46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para facilidad del cálculo todas las cifras originales se hallan multiplicadas por 1,000.

Cuadro 8. Valores de absorción de luz medidos en el espectrofotómetro a 660 μm. Se usa endosperma de trigo y extractos crudos obtenidos de semillas maduras.

<table>
<thead>
<tr>
<th>Extracto de semilla</th>
<th>Fracciones</th>
<th>Repeticiones</th>
<th>Incremento respecto al testigo**</th>
<th>Promedio T</th>
<th>Límites de confianza*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutra</td>
<td>20</td>
<td>132,80 %</td>
<td>0,7390 ± 0,064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>Acida</td>
<td>20</td>
<td>155,87 %</td>
<td>0,8721 ± 0,067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butanol</td>
<td>20</td>
<td>190,08 %</td>
<td>1,0635 ± 0,054</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neutra</td>
<td>20</td>
<td>104,74 %</td>
<td>0,5860 ± 0,047</td>
<td></td>
</tr>
<tr>
<td>ENANA</td>
<td>Acida</td>
<td>20</td>
<td>134,18 %</td>
<td>0,7507 ± 0,075</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butanol</td>
<td>20</td>
<td>163,00 %</td>
<td>0,9120 ± 0,055</td>
<td></td>
</tr>
<tr>
<td>Testigo**</td>
<td>----</td>
<td>20</td>
<td>100,00 %</td>
<td>0,5595 ± 0,047</td>
<td></td>
</tr>
</tbody>
</table>

* Los límites de confianza se hallan al nivel del 95%.

** Se usa como testigo agua destilada libre de iones.
Haciendo una comparación entre los valores de absorción obtenidos con los extractos crudos de semillas normales y los obtenidos con las concentraciones conocidas de ácido giberélico (cuadros 7, 8 y figura 4) tenemos:

Cuadro 9. Actividad en concentración aproximada de ácido giberélico manifestada por los extractos crudos de semillas maduras sobre endosperma de Trigo.

<table>
<thead>
<tr>
<th>1. Extracto de semillas normales</th>
<th>Actividad equivalente en concentración de ácido giberélico.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fracción en butanol</td>
<td>0,1 μg/ml</td>
</tr>
<tr>
<td>b. Fracción ácida</td>
<td>0,001 μg/ml</td>
</tr>
<tr>
<td>c. Fracción neutra</td>
<td>0,0001 μg/ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Extracto de semillas enanas</th>
<th>Actividad equivalente en concentración de ácido giberélico</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fracción en butanol</td>
<td>0,001 μg/ml</td>
</tr>
<tr>
<td>b. Fracción ácida</td>
<td>0,0001 μg/ml</td>
</tr>
<tr>
<td>c. Fracción neutra</td>
<td>0,00001 μg/ml</td>
</tr>
</tbody>
</table>
C. Reacción de los mutantes enanos var. México 80-R al aplicarles extractos de semillas maduras.

Con este ensayo biológico se trató de investigar la reacción en altura y expansión de las hojas, presentada por las plantas enanas al aplicarles los extractos crudos obtenidos de semillas maduras de frijol.

En igual forma que para los ensayos biológicos descritos anteriormente, en este caso se procedió a construir una curva patrón en base a concentraciones conocidas de ácido giberélico. Los valores obtenidos pueden observarse en el cuadro 10 y en la figura 7.

La altura alcanzada por las plantas enanas prácticamente no presenta variación con las aplicaciones de concentraciones bajas de ácido giberélico. La reacción se manifiesta bruscamente a partir de la concentración 1 p.p.m. y se incrementa rápidamente hasta alcanzar valores que, como en el caso de la concentración 4 p.p.m. llegan a ser 10 veces mayor que el testigo.

La longitud del hipocotilo en ninguno de los tratamientos presenta una diferencia que se considera significativa y por el contrario, todos los valores tienden a uniformarse.

En cuanto a la longitud del primer entrenudo se tiene que las diferencias se manifiestan en forma ligera, pudiendo reunirlas en cuatro grupos: el primero corresponde a las concentraciones 4, 3, 2 y 1 p.p.m.; el segundo incluye a las concentraciones 10^{-1}, 10^{-2} y 10^{-3} p.p.m.; el tercer grupo se halla formado por las concentraciones 10^{-4} y 10^{-5}, y finalmente, el testigo que es el que presenta el valor más bajo.
Cuadro 10. Valores correspondientes a la altura, longitud del hipocotilo y de los entrenudos de las plantas enanas luego de haber sido tratadas con concentraciones conocidas de ácido giberélico.

<table>
<thead>
<tr>
<th>Concentración de ácido giberélico</th>
<th>Repeticiones</th>
<th>Altura de las plantas</th>
<th>Long. Hipocotilo</th>
<th>Long. 1º entrenudo</th>
<th>Long. 2º entrenudo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Promedio</td>
<td>Límites de confianza**</td>
<td>Incremento sobre testigo</td>
<td>Promedio</td>
</tr>
<tr>
<td>4 p.p.m.</td>
<td>6</td>
<td>64,16*</td>
<td>5,11</td>
<td>1,026,56 %</td>
<td>2,75 ± 0,27</td>
</tr>
<tr>
<td>3 p.p.m.</td>
<td>6</td>
<td>58,16</td>
<td>7,65</td>
<td>930,56 %</td>
<td>2,67 ± 0,28</td>
</tr>
<tr>
<td>2 p.p.m.</td>
<td>6</td>
<td>39,67</td>
<td>13,67</td>
<td>634,72 %</td>
<td>2,72 ± 0,20</td>
</tr>
<tr>
<td>1 p.p.m.</td>
<td>6</td>
<td>18,92</td>
<td>2,16</td>
<td>302,72 %</td>
<td>2,67 ± 0,26</td>
</tr>
<tr>
<td>10^-1 p.p.m.</td>
<td>6</td>
<td>7,92</td>
<td>0,67</td>
<td>126,72 %</td>
<td>2,70 ± 0,33</td>
</tr>
<tr>
<td>10^-2 p.p.m.</td>
<td>6</td>
<td>7,08</td>
<td>1,34</td>
<td>113,28 %</td>
<td>2,75 ± 0,42</td>
</tr>
<tr>
<td>10^-3 p.p.m.</td>
<td>6</td>
<td>7,00</td>
<td>1,16</td>
<td>112,00 %</td>
<td>2,65 ± 0,27</td>
</tr>
<tr>
<td>10^-4 p.p.m.</td>
<td>6</td>
<td>6,25</td>
<td>0,67</td>
<td>100,00 %</td>
<td>2,75 ± 0,50</td>
</tr>
<tr>
<td>10^-5 p.p.m.</td>
<td>6</td>
<td>6,17</td>
<td>0,82</td>
<td>98,72 %</td>
<td>2,72 ± 0,32</td>
</tr>
<tr>
<td>Testigo</td>
<td>6</td>
<td>6,25</td>
<td>0,67</td>
<td>100,00 %</td>
<td>2,75 ± 0,26</td>
</tr>
</tbody>
</table>

* Los datos se tomaron 30 días después de la germinación.

** Los límites de confianza se hallan al nivel del 95%.
Fig. 7 Altura total alcanzada por las plantas enanas, después del tratamiento con los extractos crudos obtenidos de semillas de plantas normales y enanas.

Fig. 8 Longitud del hipocotílo y de los dos primeros entrenudos de las plantas enanas, después del tratamiento con extractos crudos obtenidos de semillas maduras de plantas normales y enanas.
Respecto a la longitud del segundo entrenudo se puede ver que se producen diferencias muy grandes, pues mientras el testigo apenas alcanza un valor de 0,35 cm el tratamiento 4 p.p.m. alcanza un valor de 11,80 cm.

La reacción presentada por las plantas enanas, al ser atomizadas con los extractos de las semillas maduras pueden verse en el cuadro 11.

Aquí se aprecia que las plantas atomizadas con el extracto neutro de semillas normales alcanzaron mayor altura, mientras las fracciones ácida y butanol de las mismas semillas presentaron una reacción sumamente baja. El extracto de semillas enanas al ser atomizado sobre las plantas no produjo reacción y se puede comparar únicamente con el testigo.

La altura alcanzada por las plantas no es sino el fiel reflejo del alargamiento del hipocotilo y de los entrenudos. Si establecemos una comparación entre dichos valores notamos que en el hipocotilo el promedio de la fracción neutra de semillas normales es una y media veces más grande que la fracción neutra de semillas enanas; los otros valores no presentan prácticamente ninguna variación.

La longitud del primer entrenudo correspondiente a la fracción neutra normal es dos y media veces más grande, mientras las fracciones ácida y butanol de semillas normales se comportan en forma muy similar a la fracción neutra, ácida y butanol correspondiente a las semillas del mutante enano.
Cuadro 11. Diferencias en longitud entre los tallos, el hipocotilo y los entrenudos de las plantas normales y enanas.

<table>
<thead>
<tr>
<th>Extracto de semillas</th>
<th>Fracciones</th>
<th>Repeticiones</th>
<th>Altura de las plantas</th>
<th>Long. hipocotilo</th>
<th>Long. 1r. entrenudo</th>
<th>Long. 2º entrenudo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Promedio</td>
<td>Límites de confianza</td>
<td>Promedio</td>
<td>Límites de confianza</td>
</tr>
<tr>
<td>Neutra</td>
<td>12</td>
<td>12,42 ± 0,76</td>
<td>3,09 ± 0,22</td>
<td>2,44 ± 1,76</td>
<td>1,54 ± 1,66</td>
<td></td>
</tr>
<tr>
<td>Acida</td>
<td>12</td>
<td>7,46 ± 0,54</td>
<td>2,84 ± 0,18</td>
<td>1,57 ± 2,46</td>
<td>0,48 ± 0,70</td>
<td></td>
</tr>
<tr>
<td>Butanol</td>
<td>12</td>
<td>7,56 ± 0,38</td>
<td>2,82 ± 0,18</td>
<td>1,37 ± 1,24</td>
<td>0,52 ± 0,76</td>
<td></td>
</tr>
<tr>
<td>Neutra</td>
<td>12</td>
<td>6,94 ± 0,44</td>
<td>2,45 ± 0,26</td>
<td>0,96 ± 0,62</td>
<td>0,35 ± 0,44</td>
<td></td>
</tr>
<tr>
<td>Acida</td>
<td>12</td>
<td>7,42 ± 0,38</td>
<td>2,72 ± 0,12</td>
<td>1,10 ± 0,79</td>
<td>0,37 ± 0,44</td>
<td></td>
</tr>
<tr>
<td>Butanol</td>
<td>12</td>
<td>6,84 ± 0,44</td>
<td>2,79 ± 0,24</td>
<td>0,89 ± 0,79</td>
<td>0,32 ± 0,47</td>
<td></td>
</tr>
<tr>
<td>Testigo</td>
<td>---</td>
<td>6,50 ± 0,95</td>
<td>2,55 ± 0,26</td>
<td>0,80 ± 0,91</td>
<td>0,34 ± 0,51</td>
<td></td>
</tr>
</tbody>
</table>
III. **Ensayos biológicos para determinar la actividad de los extractos crudos obtenidos de tallos y hojas de plantas en desarrollo**

A. **Senescencia de las hojas de Rumex obtusifolius L.**

El extracto ácido en acetato de etilo obtenido de los tallos y hojas, al ser medido mediante este ensayo biológico presentó valores de absorción de luz que se diferenciaron perfectamente del testigo como puede apreciarse en el cuadro 12.

Cuadro 12. Valores de absorción de luz medidos en el espectrofotómetro a 665 μm. Se usan discos de hojas de *R. obtusifolius* L. y extractos crudos de tallos y hojas.

<table>
<thead>
<tr>
<th>Extracto de tallos y hojas*</th>
<th>No de repeticiones</th>
<th>Promedio</th>
<th>Límites de confianza</th>
<th>Incremento**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>20</td>
<td>0,6205 ± 0,031</td>
<td></td>
<td>187,17 %</td>
</tr>
<tr>
<td>Enano</td>
<td>20</td>
<td>0,4450 ± 0,029</td>
<td></td>
<td>134,24 %</td>
</tr>
<tr>
<td>Testigo***</td>
<td>20</td>
<td>0,3315 ± 0,024</td>
<td></td>
<td>100,00 %</td>
</tr>
</tbody>
</table>

* Al extracto de tallos y hojas de plantas normales se denomina extracto I para facilitidad de la redacción; y al extracto de tallos y hojas de plantas enanas se llamará extracto II.

** Incremento en porcentaje con respecto al testigo considerado como 100%.

*** Se usa como testigo agua destilada libre de iones.

Los valores obtenidos en este ensayo biológico muestran que el extracto I tiene mayor actividad que el extracto II, así, el
extracto I es 1,8 veces más activo que el testigo, mientras el extracto II es únicamente 1,3 veces más activo. Además, el extracto I es 2,5 veces más activo que el extracto II.

Al comparar los valores de absorción obtenidos en este ensayo biológico con los obtenidos para concentraciones conocidas de ácido giberélico (cuadro 4, figura 3) dan los siguientes valores:

<table>
<thead>
<tr>
<th>Extracto de tallos y hojas</th>
<th>Actividad equivalente en concentración de ácido giberélico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0,001 μg/ml</td>
</tr>
<tr>
<td>Enano</td>
<td>0,0001 μg/ml</td>
</tr>
</tbody>
</table>

El trabajo con este tipo de extracto se hizo bastante difícil porque no se pudo eliminar todo el contenido de clorofila presente en los extractos originales.

B. Liberación de azúcares reductores en el endosperma de trigo

Los valores de absorción obtenidos con el extracto ácido en acetato de etilo de tallos y hojas de plantas en desarrollo, mediante este ensayo biológico se presentan en el cuadro 13.
Cuadro 13. Valores de absorción de luz medidos en el espectrofotómetro a 660 μ. Se utiliza endosperma de trigo y extractos crudos de tallos y hojas de plantas normales y enanas.

<table>
<thead>
<tr>
<th>Extracto de tallos y hojas*</th>
<th>N° de repeticiones</th>
<th>Promedio</th>
<th>Límites de confianza</th>
<th>Incremento**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>20</td>
<td>0,4690 ±</td>
<td>0,020</td>
<td>181,26 %</td>
</tr>
<tr>
<td>Enano</td>
<td>20</td>
<td>0,3110 ±</td>
<td>0,016</td>
<td>120,19 %</td>
</tr>
<tr>
<td>Testigo***</td>
<td>20</td>
<td>0,2587 ±</td>
<td>0,014</td>
<td>100,00 %</td>
</tr>
</tbody>
</table>

* Al extracto de tallos y hojas de plantas normales se denomina rá extracto I para facilitar la redacción; y al extracto de tallos y hojas de plantas enanas se llamará extracto II.

** Incremento en porcentaje con respecto al testigo considerado 100%.

*** Se usa como testigo agua destilada libre de iones.

Analizando este cuadro se ve que el extracto I es 1,8 veces más activo que el testigo, en tanto que el extracto II es 1,2 veces más activo que el mismo testigo. Además, el extracto I es 1,5 veces más activo que el extracto II.

C. **Elongación de los mutantes enanos var. México-80 R, al aplicarles los extractos de tallos y hojas de plantas en desarrollo.**

En este ensayo biológico no hubo ninguna reacción de las plantas enanas al asperjarlas con los extractos tanto de plantas normales como de plantas enanas.
IV. Separación de los extractos en cromatografía de capa fina

La fracción neutra normal presentó tres manchas, mientras que la fracción neutra enana presentó solamente dos manchas. Dos de las manchas en ambos extractos se encuentran en el mismo R_f; y la mancha en que varían se encuentra a un R_f 0,89-0,90 (ver cuadro 14).

La fracción ácida normal presentó cinco manchas, mientras la fracción ácida enana solamente 4; las manchas en que difieren los dos tipos de fracciones se encuentran en los siguientes R_f: 0,13-0,14; 0,16-0,17; y 0,35 (ver cuando 14).

La fracción de butanol normal presentó seis manchas, y la fracción de butanol enano presentó 3 manchas. De estas las que difieren en las dos fracciones se encuentran en los siguientes RF: 0,23-0,24; 0,35; 0,93-0,94.
Cuadro 14. Valores de \(R_f \) correspondientes a las diversas manchas de los extractos separados en cromatografía de capa fina.

<table>
<thead>
<tr>
<th></th>
<th>Acido Sulfúrico con agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(R_f)</td>
</tr>
<tr>
<td>0,06-0,07</td>
<td>0,13-0,14</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Neutro normal</td>
<td>-</td>
</tr>
<tr>
<td>Neutro enano</td>
<td>-</td>
</tr>
<tr>
<td>Ácido normal</td>
<td>+</td>
</tr>
<tr>
<td>Acido enano</td>
<td>+</td>
</tr>
<tr>
<td>Butanol normal</td>
<td>+</td>
</tr>
<tr>
<td>Butanol enano</td>
<td>+</td>
</tr>
</tbody>
</table>
DIscusión

1. **Diferencia en el crecimiento de las plantas normales y enanas de frijol.**

La diferencia observada entre las plantas normales y enanas, obtenidas por mutación, se debe principalmente a que las plantas enanas presentan entrenudos más cortos que los de las plantas normales notándose esta diferencia en forma más marcada en el segundo entrenudo, como se ve en el cuadro 1. Este comportamiento manifiesta una relación con lo estudiado por Li (25), quien encontró, que en el maíz, los entrenudos inferiores de las plantas enanas presentan una longitud casi igual a la de las plantas normales, mientras que los entrenudos inmediatamente arriba y abajo de la mazorca son marcadamente más largos en las plantas normales. El largo de las raíces no manifiesta mayor diferencia y el desarrollo de vainas y granos de los dos tipos de plantas es igual. Esto pone de manifiesto, que el mecanismo que controla el desarrollo de las diversas partes de la planta, en este caso, puede actuar por separado en forma individual y específica, coincidiendo con el criterio expuesto por Phinney y West (44) y también por Moh y Alán (33), quienes consideran que la alteración de un gen ocasiona cambios únicamente sobre un determinado proceso bioquímico.

2. **Ensayos biológicos que determinan la actividad de los extractos crudos de semillas maduras.**

Senescencia de discos de R. obtusifolius L.

Los extractos crudos de semillas maduras al ponerse en contac-
to con los discos de hojas de *R. obtusifolius* L. impiden la pérdida de clorofila, por envejecimiento de dichos discos, en igual forma que lo hacen las soluciones de ácido gibérgico. De acuerdo a la mayor o menor retención de la clorofila se puede estimar cual de los extractos presenta sustancias giberelinoides con actividad similar al ácido gibérgico.

El tiempo necesario para que los discos tratados con agua pierdan casi toda su clorofila, mientras los tratados con los extractos mantienen una proporción mayor se estimó que debe ser de 4 días a 24°C.

La fracción de butanol fue la que retuvo la mayor cantidad de la clorofila, indicándonos con esto que en esta fracción existen sustancias giberelinoides que tienen un comportamiento similar al del ácido gibérgico y que por su gran actividad manifestada se hallan presentes en una proporción muy elevada. La fracción ácida retuvo una cantidad menor de clorofila que la fracción anterior, manifestando con esto que en esta fracción también existen sustancias giberelinoides con actividad parecida a la del ácido gibérgico, pero que su proporción es más baja que la encontrada para el caso de la fracción en butanol. La fracción neutra no retuvo casi nada de clorofila por lo que puede decirse que en esta fracción no existen sustancias giberelinoides con actividad similar a la del ácido gibérgico, o si están presentes es en una proporción tan baja que no ofrece ninguna reacción. Las fracciones butanol, ácida y neutra de las semillas normales guardan la misma relación, pero su actividad en general es muy baja comparada con las fracciones
de semillas normales. Esto pone de manifiesto que el poco crecimiento alcanzado por las plantas enanas se deba posiblemente a este bajo contenido de sustancias giberelinoides, como lo manifiesta Pelton (42), quien considera la existencia de una cantidad limitada de giberelina original en las plantas enanas, cuando se las compara con la cantidad encontrada en las plantas normales.

Liberación de azúcares reductores en el endosperma de trigo

Los extractos crudos puestos junto con las semillas de trigo estimulan la liberación de azúcares reductores, en igual forma en que lo hace el ácido giberélico, y de acuerdo a la mayor o menor cantidad de azúcares reductores liberados se puede estimar si hay o no sustancias giberelinoides en el extracto probado.

En el caso del presente trabajo, la fracción de butanol fue la que produjo la mayor cantidad de azúcares reductores lo que indica que en esta fracción existen sustancias giberelinoides en mayor proporción que en las otras fracciones. La fracción ácida reaccionó en menor forma, probándose con esto que la cantidad de sustancias giberelinoides con acción similar al del ácido giberélico es baja en esta fracción. La fracción neutra mostró una ligerísima reacción posiblemente debido a una interacción de las sustancias con las semillas de trigo en igual forma en que lo hacen estas sustancias con las plantas vivas. Las fracciones butanol, ácida y neutra de las semillas enanas presentan una relación igual pero su actividad es sumamente baja comparada con la de las plantas normales.
El comportamiento de las tres fracciones en estos dos ensayos biológicos es exactamente igual, por lo que se puede decir que en las semillas maduras de frijol var México-80 R, existen tres tipos de sustancias giberelinoideas que se comportan de diferente manera, y que de las tres solamente dos manifiestan la actividad propia de las giberelinas, siendo estas la fracción de butanol y la fracción ácida.

De estos dos ensayos biológicos probados, el que mayor precisión ofrece es el ensayo de senescencia de discos de hojas de *Phaseolus vulgaris* L., como se desprende de la comparación de los valores del coeficiente de regresión. La mayor variabilidad presentada por el ensayo de trigo posiblemente se deba a que no todas las semillas de trigo reaccionan de la misma manera, como lo demostraron Coombe et al. (7), con las semillas de cebada.

Acción de los extractos crudos aplicados sobre las plantas enanas de frijol var. México-80 R.

Los extractos crudos de semillas maduras al ser aplicados sobre las plantas enanas de frijol produjeron diversos tipos de reacción; en primer lugar hubo un cambio en la coloración de las hojas, debido a una alteración del contenido de clorofila presente en dichas hojas. Estos resultados obtenidos están de acuerdo con lo encontrado por Wolf y Haber (57), quienes en una muestra de 100 cm2 encontraron que las hojas de las plantas enanas tenían un contenido mucho más alto de clorofila total que las hojas de las respectivas plantas normales, y que el contenido de clorofila de
las hojas en las plantas enanas disminuía con la aplicación de gibberelinas. Concluyen estos autores que este fenómeno se produce debido a que las gibberelinas interfieren en forma indirecta con el metabolismo de la clorofila, haciendo disminuir la síntesis de clorofila para guardar un equilibrio con la expansión de las células.

La fracción ácida de las semillas de plantas normales fue la primera en producir una reacción visible que fue el cambio de color de las hojas, este cambio de color se produjo a las 24 horas después de haberse asperjado el extracto sobre las hojas, comportándose en igual forma que lo hace el ácido giberélico para cambiar el contenido de clorofila de las hojas.

La fracción neutra de semillas normales produjo la misma reacción en forma más marcada que en el caso anterior, con la diferencia de que esta reacción fue visible a las 96 horas después de haberse asperjado el extracto. Esto quiere decir, que las sustancias presentes en esta fracción necesitan de cierto tiempo de interacción con la planta para que produzcan la reacción. La fracción en butanol de las semillas normales no manifestó en este caso ninguna reacción.

Las tres fracciones correspondientes al extracto de semillas maduras de frijol enano se comportaron en igual forma que el testigo, confirmando con esto que la cantidad de sustancias giberelinoídes de este extracto es bastante bajo como se vio en los ensayos de Rumex y Trigo.

Inmediatamente después de la reacción en el color de las
hojas, se notó una diferencia en el alargamiento de los entrenudos de las plantas enanas de frijol asperjadas. Este alargamiento de los entrenudos se produjo en aquellas plantas asperjadas con la fracción neutra de las semillas normales. Las fracciones ácida y butanol de estas mismas semillas, al igual que las fracciones neutra, ácida y butanol de las semillas enanas no provocaron ninguna reacción visible. Cuando se midió la longitud de los entrenudos se pudo dar cuenta que la mayor alteración se encontraba en el segundo entrenudo. Esto coincide exactamente con la reacción observada al aplicar soluciones de ácido giberélico a las plantas enanas de frijol. Esto quiere decir que la influencia de las sustancias giberelinoides presentes en las plantas enanas, llega únicamente hasta la primera etapa de desarrollo de las plantas, porque es únicamente a partir de la segunda etapa de desarrollo, cuando la adición de la sustancia neutra produce la mayor estimulación.

Como consecuencia del alargamiento de los entrenudos lógicamente estas plantas aplicadas con el extracto neutro fueron las que mayor altura alcanzaron al final del experimento. Le siguieron en orden decreciente las fracciones ácida y butanol de las semillas normales. Las fracciones neutra, ácida y butanol de las plantas enanas no produjeron reacción y las plantas se comportaron en igual forma que el testigo.

Además de las reacciones ya descritas se produjo una expansión de las hojas cotiledonales y también de los tres foliolos de la primera hoja verdadera. La mayor expansión presentaron las hojas de las plantas asperjadas con la fracción neutra normal,
coincidiendo esto con las reacciones provocadas por la misma fracción tanto en la coloración de las hojas, como en el alargamiento de los entrenudos. Se produjo también expansión de las hojas, pero en ligerísima proporción con la aspersión de las fracciones ácida y butanol de las semillas normales; por el contrario las fracciones neutra, ácida y butanol de las semillas enanas no produjeron reacción comportándose en igual forma que el testigo.

La baja reacción presentada por la fracción neutra en los ensayos de Rumex y Trigo y la gran reacción manifestada por esta fracción sobre las plantas enanas, hace pensar que en esta fracción existe un tipo de sustancias que no reaccionan de la misma manera que las giberelinas, pero que al ponerse en contacto con las plantas vivas producen cambios que estimulan el crecimiento. En un experimento adicional se notó también una interacción entre la fracción neutra normal y las semillas enanas germinadas en cámaras húmedas conteniendo dicha fracción neutra, pues hubo un ligero incremento en el desarrollo de las plantas tratadas con relación al testigo en el que se utilizó simplemente agua destilada.

El tipo de sustancias presentes en la fracción neutra bien podrían ser precursores de las giberelinas confirmándose así lo expuesto por Hashimoto y Rappaport (14), quienes consideran que posiblemente existen formas de reserva de las giberelinas en las semillas, y que estas formas de reserva se incrementan conforme las semillas maduras, alcanzando su mayor proporción en las semillas maduras secas.
El comportamiento diferente de la fracción neutra de las semillas enanas con respecto al de las semillas normales en este ensayo, indica que en las semillas enanas no existe el tipo de sustancias propuestas en este trabajo como precursoras de las gibberelinas, o que si están presentes, es en una cantidad tan baja que al interaccionar con las plantas vivas no son capaces de producir ninguna alteración visible en el proceso fisiológico normal de las plantas. Posiblemente esta diferencia en el contenido de sustancias precursoras entre las fracciones neutra normal y neutra enana sea la causa principal que determina el bajo crecimiento de las plantas enanas. Para poder afirmar esta hipótesis se hace necesario continuar investigando esta fracción neutra hasta llegar a la identificación de estas sustancias denominadas precursoras y ver su relación con la producción de gibberelinas.

Se considera de mucho interés ver también la reacción de este mutante enano de frijol con la aplicación de cada una de las diversas gibberelinas conocidas, ya que es posible que este, a bajas concentraciones presente reacción únicamente a un determinado tipo de gibberelinas, con lo cual se habría dado un paso más en la obtención de una nueva prueba biológica de gran ayuda en el estudio de las sustancias de crecimiento.

3. **Ensayos biológicos que determinan la actividad de los extractos crudos de tallos y hojas.**

El extracto obtenido de los tallos y hojas de plantas normales, presentó una mejor reacción que el extracto de tallos y hojas
de plantas enanas, al estimarse su actividad con los ensayos biológicos de *Rumex* y trigo. Por el contrario al aplicarse los extractos sobre las plantas enanas, ninguno de los dos tipos de extractos manifestaron una reacción visible, lo que quiere decir que el contenido de sustancias gibberelinoides presentes en estos extractos es bajo, coincidiendo con lo expuesto por Chailakyan y Sarkisova (6), quienes consideran que la concentración de gibberelinas es mayor en los órganos generativos que en los órganos vegetativos.
RESUMEN

A partir de semillas y plantas normales y enanas de frijol (*P. vulgaris* L.) var. México-80 R, se obtuvieron extractos fraccionados en los cuales se estudió el contenido de sustancias giberelínoides.

Los extractos de semillas maduras en las pruebas biológicas de *R. obtusifolius* y endosperma de trigo se comportaron de la siguiente manera: Mayor actividad se encontró en las fracciones ácida en butanol y ácida en acetato de etilo. La fracción neutra en etilo presentó una actividad relativamente baja.

En general una mayor cantidad de sustancias giberelínoides se encontró en las fracciones de semillas normales antes que en los extractos de semillas enanas.

Por el contrario la prueba en que se midió la actividad de los extractos de acuerdo a la reacción sobre las propias plantas enanas, se tuvo que la mayor actividad mostró la fracción neutra proveniente de semillas normales. Las fracciones ácida en butanol y ácida en acetato de etilo de semillas normales, al igual que las fracciones neutra, ácida en butanol y ácida en acetato de etilo de semillas enanas no manifestaron ninguna actividad.

En los extractos de tallos y hojas de plantas normales se encontró mayor cantidad de sustancias giberelínoides que en los extractos de plantas enanas, al estimarse la actividad con las pruebas de *R. obtusifolius* y endosperma de trigo. En la prueba biológica con las propias plantas enanas no hubo ninguna reacción.
SUMMARY

The content of gibberellin-like substances was studied in fractional extracts obtained from seeds and plants, normal and dwarf of bean (*P. vulgaris* L.) var Mexico-80 R.

Mature seed extracts in biological trials of *R. obtusifolius* and wheat endosperm behaved as follow: More activity was found in the acid fraction in butanol and ethyl acetate. The neutral fraction in the ethyl acetate presented a low relative activity.

In general a greater quantity of gibberellin-like substances were found in the normal seed fraction than those in dwarf seed extracts.

On the other hand, the trial in which the activity of the extracts was measured in accordance with the reaction of the dwarf plants. The greatest activity was shown by the neutral fraction coming from normal seeds. The acid fraction in butanol, ethyl acetate of the normal seeds well as the neutral fraction, and acid fraction in butanol and ethyl acetate of the dwarf seeds, did not show any activity.

In stem and leaf extracts of normal plants greater quantities of gibberellin-like substances were found than in extracts from the dwarf plants, when the activity was measured in the trials of *R. obtusifolius* and wheat endosperm. In the biological trials with dwarf plants no reaction took place.

23. LANG, A. Bolting and flowering in biennial Hyoscyamus niger induced gibberellin. Plant Physiology 31(suppl.):xxxv. 1956.

