Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)
Turrialba, Costa Rica

PROYECTO DE TESIS

COMPORTAMIENTO INICIAL DEL LAUREL (Cordia alliodora)
PLANTADO EN ASOCIACIÓN CON MAÍZ UTILIZANDO DOS NIVELES DE
FERTILIZACIÓN

(Proyecto de Tesis)

Mauricio A. García

Julio de 1974
DATOS GENERALES

LINEA DE TRABAJO : Silvicultura.

PROYECTO : Sistemas de Producción Forestal.

SUB-PROYECTO : Selección de especies forestales comerciales de rápido crecimiento: sistema "Taungya".

TITULO DE LA TESIS : Comportamiento inicial del Laurel (Cordia alliodora), plantado en asociación con maíz utilizando dos niveles de fertilización.

INVESTIGADOR RESPONSABLE : Mauro Muñoz A.

PERSONAL COLABORADOR : - Pablo Rosero, M.S., Consejero Principal.
- Leslie Whitmore, M.S., Comité.
- Jorge Soria, Ph.D., Comité.
- Víctor Quiroga, M.S., Comité.
- José Fargas, Ph.D., Asesor
INTRODUCCION

1. Motivación e importancia del estudio.

La necesidad cada vez más apremiante de proveer de alimentos a una población que crece en forma desmedida, obliga a pensar en el aprovechamiento intensivo del recurso suelo, sobre todo en aquellos países donde las áreas disponibles para la agricultura son bastante limitadas.

La demanda de productos forestales en todo el mundo está aumentando cada día más y más, y las pocas reservas de madera utilizables y valiosas, se están agotando, lo cual también nos obliga a prestar un mayor interés a este recurso, mediante la aplicación de diferentes prácticas, a fin de poder cubrir las futuras demandas de estos productos.

A pesar de las influencias de los bosques y de los perfeccionamientos de la industria forestal, la cuestión de importancia supremo para el porvenir, es la relación cada vez más estrecha que existe entre la agricultura y la explotación de los recursos forestales; ambas formas de aprovechamiento del suelo se han disputado, y siguen disputándose, las tierras fértiles.

Esto sucede, en general, en las zonas donde la población no llega a comprender que la agricultura y la silvicultura no son competitivas, sino complementarias. Para los agricultores, al igual que para los silvicultores, lo que importa es aprovechar en beneficio de la población, el suelo y el clima.

2. El problema y su aplicación.

Hasta hoy, muy poco se ha hecho por tratar de asociar los cultivos agrícolas al bosque; algunos estudios se han relacionado con el sistema "Taungya", que ha tenido buenos resultados en los diferentes lugares donde
ha sido aplicado. Pretendiendo, mediante el presente experimento, determinar el comportamiento inicial de una especie forestal en asociación con un cultivo agrícola y el empleo de un nivel de fertilización, cuya ejecución llegaría a repercutir en los siguientes puntos:

2.1. Uso intensivo del suelo en terrenos forestales.

2.2. Contribución como un importante avance social, ya que los agricultores siguen cosechando sus alimentos tradicionales, y, además, obtienen trabajo adicional intercalado a las plantaciones forestales.

2.3. Utilización relativamente completa de la tierra, elevándose la producción total por unidad de superficie; bosque agricultura: sistema 'Taungya'.

2.4. Reducción de costos de mantenimiento de la plantación.

3. Objetivos generales y específicos.

Los principales objetivos del presente trabajo son:

3.1. Determinar el comportamiento del laurel, relacionado con la supervivencia y crecimiento inicial en altura y diámetro, plantado en asociación con maíz, en comparación con una plantación sin uso del terreno para la agricultura.

3.2. Respuesta del laurel y el maíz, cultivados en forma asociada, a la fertilización completa.

3.3. Comparar los costos de establecimiento del bosque bajo los dos sistemas, considerando el rendimiento económico obtenido del cultivo agrícola.
REVISIÓN DE LITERATURA

La explotación mixta, forestal y agrícola, o mejor llamada agri-silvicultura, se practica bajo diversidad de condiciones y a la vez, con diferentes nombres; se le conoce comúnmente con el nombre birmano de “Taungya”, en el África Oriental, como “sistema shamba”; en el Congo Belga, “Mayumbe” (8); en Madrás, India, se le designa “rab cumkum” (9), los cultivadores de Bombay le llaman el “rab sistem” (10). En Mysore toma el nombre de “Kurn” (11). Al menos en una docena de países.

En todos los países donde ha sido aplicado este sistema, ha tenido que ver mucho con la explosión demográfica; sobre todo en las regiones menos desarrolladas, es decir, América Latina, India y el Lejano Oriente, donde el 80% o más de la población vive muchas veces en el medio rural, y donde el número de habitantes aumenta con mayor rapidez. Así mismo, otros factores que inciden en este mismo problema, son los sistemas actuales de tenencia de la tierra, que son muy variados y que por lo general no reconocen el derecho de progenitura y obligan a dividir las fincas entre todos los descendientes del propietario, a la muerte de éste. Cuando el número de familias crece en progresión geométrica, las fincas y su producción pueden quedar pronto tan fragmentadas, que impiden toda explotación eficaz (3).

La agricultura migratoria que se ha venido practicando desde hace mucho tiempo, abarca una gran variedad de formas primitivas de cultivo, todavía extendidas en vastas zonas del globo, particularmente en los bosques húmedos, que es precisamente donde se encuentran la mayoría de los países en desarrollo, a más de que ocasiona el derribo de la madera y la degradación lenta de la vegetación forestal, ya que la producción de alimentos
es demasiado baja en relación a la superficie de cultivos y al esfuerzo necesario para producirlas, viniendo a constituir no sólo una forma primitiva de agricultura, sino un modo de vida de arraigo ancestral en la población de muchas regiones boscosas (10).

El sistema "Taungya", es una forma modificada de la agricultura migratoria; cuando va a iniciarse la explotación intensiva de una reserva forestal, se procura estimular a los campesinos a que corten y arranquen los matorrales de una zona para plantar árboles de explotación más rentable, al tiempo que se dedican al cultivo de sus huertos (3).

El sistema "Taungya", consiste en practicar la agricultura migratoria durante los dos o tres primeros años, con una interplantación de árboles de maderas de valor. El agricultor migrante planta las especies forestales como una simple extensión de sus maizales, y al abandonarlos, deja establecida una fuente de gran riqueza futura. El sistema funciona bien en las zonas de Malasia y Trinidad, donde al aumento de población es importante y que cuentan con una buena red de carreteras y con una supervisión oficial bien organizada (14).

En Turrialba, el sistema ha dado buenos resultados (1), habiéndose obtenido además grandes beneficios con las plantaciones mixtas de cañita y caucho, en vez de caucho solamente (7). Y en Escárcega, Campeche, se están efectuando actualmente, con arreglo a criterios económicos y silvícolas, experimentos que probablemente darán buenos resultados (14).

Los máximos progresos se conseguirán con innovaciones relativamente sencillas y fácilmente aplicables a las colectividades campesinas, que se adaptan además a los procesos ecológicos fundamentales de los trópicos húmedos, tales como el uso de fertilizantes, insecticidas, herbicidas, etc., con lo cual se podría atraer al cultivador a la órbita de la modernización, con el objeto de
que no puedan prescindir de la ayuda externa, si quieren progresar (14).

Ya Holdridge (6) en 1959, propugna la idea de experimentar la combinación de la agricultura migratoria con cultivos arbóreos de diferentes edades.

Terra (13), haciendo referencia a una experiencia indonesia, ha recomendado la horticultura mixta doméstica como una forma productiva y estable de aprovechamiento de las tierras tropicales.

Sistemas de plantación.

En el África Occidental, las especies frondosas plantadas con los métodos "Taungya" generalmente se establecen con un espaciamiento inicial de 3.5 x 3.5 metros.

En Mayumbe (Congo Belga), se establecen por este sistema plantaciones de Terminalia superba, combinada con el cultivo del banano. Los árboles se plantan con 4.0 x 4.0 metros de espaciamiento y los bananos en las líneas intermedias, también a una distancia de 4.0 x 4.0 metros (9).

Para algunas especies, sobre todo Chlorophora y las caobas, aparte de que se economiza dinero, conviene un espaciamiento ancho como medio para disminuir los daños que causan los insectos. En Benín se ha llegado a una solución intermedia, que consiste en plantar las caobas con 9.0 x 9.0 metros de espaciamiento, en una matriz de Nauclea (Sarcocephalus), establecida a 3.50 x 3.50 metros; parece que este método es la mejor respuesta a las exigencias, aparentemente contradictorias, de cubrir el terreno rápidamente y evitar las epidemias de insectos. Sin embargo, las mezclas de este tipo son difíciles de tratar, a menos que todas las especies presenten una rapidez de crecimiento bastante uniforme (5).
en el ensayo realizado en Turrialba, las distancias utilizadas con las especies: caoba, laurel, ciprés y teca, fue de 3 x 3 metros, espaciadamente en el cual fueron intercalados cultivos de maíz, frijol y yuca (1).

Cultivos agrícolas deseados.

Los cultivos agrícolas que deberán ser utilizados de preferencia, tendrán que ser anuales, como frijol, maíz, tomate, yuca, camote, arroz (1).

En experimentos realizados en Madrás, India, se ha demostrado que los cultivos de arroz, chile, algodón, yuca y una leguminosa que sirve como forraje "horse gram" Dolichus biflorus, son deseables para crecer en asociación con la teca (1).

En un ensayo realizado en Cuba para establecer la teca por este método, se eligió la piña como cultivo intercalado, procediéndose de la siguiente manera:

Después de preparado el terreno y hecha una aplicación de abono químico adecuado al cultivo, se procedió a la siembra de las coronas en camellones espaciados a 2.33 metros. A los 8 meses de sembrada la piña, se plantaron los tocones de teca a 2.33 x 2.33 metros (4).
MATERIALES Y MÉTODOS

1. Localización del estudio.

Los trabajos se llevarán a cabo en los terrenos del Departamento de Ciencias Forestales del CATIE, Turrialba, Costa Rica; en parcelas localizadas en el sitio denominado "Bajo San Lucas", a una elevación de 530 s.n.m., con una temperatura media anual de 22.5 grados centígrados, y una precipitación anual de 2.565.9 m.m., correspondiendo a la formación ecológica de Bosque muy húmedo subtropical, de acuerdo a la clasificación de formaciones vegetales de Holdridge.

Suelos.- Han sido definidos como muy superficiales y heterogéneos. No presentan un perdid detenido. Se han agrupado como litosoles, siendo su material parental aglomerado. Requieren cuidadosas prácticas de manejo y de conservación de suelos (2).

2. Definición de la población y la muestra.

La población estará formada de 700 plantas de laurel (Cordia alliodora), plantadas a 2.5 metros de distancia, en parcelas de 15 x 10 metros, lo que representaría una densidad de 1.600 plantas/ha y distribuidas en 4 tratamientos con 5 repeticiones, en parcelas divididas para plantas completas y pseudoestacas.

El cultivo de maíz será intercalado en hileras de 1 m., con un distanciamiento de 0.5 metros entre plantas, a fin de mantener una separación conveniente entre las plantas de laurel y las hileras de maíz. La población en el cultivo de maíz estaría representada por 6.160 plantas, equivalentes a 41.066 plantas/ha, considerando dos semillas por golpe, repartidas en las parcelas correspondientes.
3. **Recolección de datos.**

- Limpieza y preparación del terreno para la plantación y el cultivo.
- Registro de datos meteorológicos correspondientes al período de duración del presente experimento, así como de los días de siembra.
- Determinación de la supervivencia al final del primero, segundo y tercer mes de la fecha de plantación.
- Medición de la altura y el diámetro de las plantas de laurel al iniciar el experimento y continuando luego cada 30 días, durante un período de 10 meses; la altura se tomará desde un punto de referencia en el tallo (1 cm. del suelo), procediéndose a señalar este sitio con pintura; el diámetro se registrará en este mismo lugar.
- Serán realizadas dos siembras de maíz, evaluando en cada una de ellas, los costos de producción y rendimientos obtenidos.
- La plantación y el cultivo se mantendrán exentos de malas hierbas, mediante las limpias necesarias.

4. **Análisis de la Información.**

- Diseño estadístico: Parcelas divididas en bloques completamente al azar, con 4 tratamientos, 5 repeticiones y 2 subparcelas.

4.1. **Definición de términos e hipótesis a probar.**

Se compararán los efectos de los siguientes tratamientos:

4.1.1. **Plantación de laurel sin fertilización y sin asociación con maíz.**

4.1.2. **Plantación de laurel con fertilización y sin asociación con maíz.**
4.1.3. Plantación de laurel asociado con maíz sin fértilización.

4.1.4. Plantación de laurel asociado con maíz con fértilización (aplicada en fracciones).

5. Esquema del Análisis de la Varianza.

<table>
<thead>
<tr>
<th>Fuentes de Variación</th>
<th>G. L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>4</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>3</td>
</tr>
<tr>
<td>Error (a)</td>
<td>12</td>
</tr>
<tr>
<td>Sub-Tratamientos</td>
<td>1</td>
</tr>
<tr>
<td>Tratamientos x Sub-Tratamiento</td>
<td>3</td>
</tr>
<tr>
<td>Error (b)</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>39</td>
</tr>
</tbody>
</table>
LITERATURA CITADA

5. GILORMINI, Y.A. Orientando al agricultor en silvicultura. IN Caribbean Forerster 7(9):336. 1946.

INFORMACIONES ADICIONALES

A. Fecha de Iniciación del trabajo
10 de agosto de 1974.

B. Duración probable de la investigación
10 meses.

C. Costo estimado

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de obra</td>
<td>$164.00</td>
</tr>
<tr>
<td>Transporte de personal y plantas</td>
<td>$20.00</td>
</tr>
<tr>
<td>Equipos</td>
<td>$20.00</td>
</tr>
<tr>
<td>Suministros y Materiales</td>
<td>$25.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$230.00</td>
</tr>
</tbody>
</table>

APROBADO:

Pablo Rosero G., M.S. Consejero

Leslie Whitmore, M.S. Comité

Jorge Soria, Ph.D. Comité

Víctor Quiroga, M.S. Comité

José Fargas, Ph.D. Asesor

Jefe del Departamento