Aislamientos y pruebas in vitro de
Fusarium oxysporum f. sp. cubense (FOC) en banano

por

Diana Fernanda Lara Fiallos

Turrialba, Costa Rica, 2009
CONTENIDO

1 INTRODUCCIÓN ... 1

1.1 Objetivos ... 2

1.1.1 Objetivo general .. 2

1.1.2 Objetivos específicos ... 2

2 REVISIÓN DE LITERATURA .. 3

2.1 El Mal de Panamá y su importancia económica... 3

2.2 Razas fisiológicas de *Fusarium oxysporum* f. sp. *cubense* .. 4

2.3 Biología de *Fusarium oxysporum* f. sp. *cubense* .. 4

2.4 Penetración y traslocación del hongo en la planta .. 4

2.5 Síntomas del Mal de Panamá.. 5

2.6 Mecanismos de manejo de la enfermedad .. 6

2.6.1 Resistencia genética .. 6

2.6.2 Control cultural ... 6

2.6.3 Control biológico ... 7

3 MATERIALES Y MÉTODOS .. 8

3.1 Ubicación geográfica del trabajo de investigación ... 8

3.2 Aislamiento del hongo *Fusarium oxysporum* f. sp. *cubense* .. 8

3.2.1 Toma de muestras de plantas afectadas por *Fusarium oxysporum* f. sp. *cubense* 8

3.2.2 Procesamiento de las muestras en el laboratorio ... 9

3.2.3 Determinación del porcentaje de colonización de *Fusarium oxysporum* f. sp. *cubense* 9

3.2.4 Purificación de *Fusarium oxysporum* f. sp. *cubense* ... 10

3.2.5 Identificación de seis aislamientos de *Fusarium oxysporum* f. sp. *cubense*....... 10

3.3 Caracterización de nueve aislamientos de *Fusarium oxysporum* f. sp. *cubense* y reconocimiento de sus estructuras reproductivas ... 10
3.4 Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo ...

3.5 Establecimiento de un criobanco

3.6 Prueba de antibiosis sobre tres aislamientos de FOC

3.7 Análisis estadístico

3.7.1 Porcentaje de colonización y potencial de inóculo

3.7.2 Prueba de antibiosis

4 RESULTADOS

4.1 Aislamientos de Fusarium oxysporum f. sp. cubense

4.2 Porcentaje de colonización

4.3 Caracterización de nueve aislamientos de Fusarium oxysporum f. sp. cubense y reconocimiento de sus estructuras reproductivas

4.4 Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo

4.5 Prueba de antibiosis sobre tres aislamientos de FOC

5 DISCUSIÓN

5.1 Porcentaje de colonización

5.2 Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo

5.3 Prueba de antibiosis sobre tres aislamientos de FOC

6 CONCLUSIONES

6.1 Porcentaje de colonización

6.2 Caracterización de nueve aislamientos de Fusarium oxysporum f. sp. cubense y reconocimiento de estructuras reproductivas

6.3 Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo

6.4 Prueba de antibiosis sobre tres aislamientos de FOC

6.5 BIBLIOGRAFÍA

ANEXOS
1 INTRODUCCIÓN

La enfermedad llamada marchitamiento del banano o Mal de Panamá, causada por el hongo *Fusarium oxysporum* f. sp. *cubense*, figura entre las amenazas que más pérdidas económicas ocasiona a las musáceas llegando hasta un 100% en la mayoría de los países donde se plantan estos cultivares (Hwang y Ko 2004, Pérez 2004).

En los años 60 el Mal de Panamá causó severos daños en la producción del cultivar ‘Gros Michel’ (AAA), principal banano de exportación en aquel momento y como consecuencia desaparecieron más de 40.000 ha localizadas en Centro y Sur América (Stover 1962), lo que conllevó a la adopción de cultivares del subgrupo Cavendish (AAA) como banano de exportación (Stover 1986, Ploetz 1994).

Actualmente esta enfermedad representa un serio problema para muchos cultivares de banano que son plantados en asociación con café y cacao especialmente por pequeños productores, así como en pequeñas fincas que producen banano para mercados locales (Moore et al. 1995, Umaña et al. 2000, Silagyi 2002). De igual manera, a pesar de que la raza 4 de *Fusarium oxysporum* f. sp. *cubense* no ha sido reportada en el continente americano, constituye una amenaza para la industria bananera dado que el 100% de las plantaciones comerciales corresponden a cultivares del subgrupo Cavendish, todos susceptibles a esta raza (Ploetz 1994, Moore et al. 1995, Ploetz 2006).

Desafortunadamente los métodos de control químico no han sido efectivos para combatir el marchitamiento por *Fusarium* (Ploetz 1994), tampoco buenas prácticas culturales han reducido su incidencia y severidad. Varias investigaciones han centrado sus esfuerzos en la búsqueda de fuentes naturales de resistencia al patógeno en especies y cultivares silvestres, así como en diploides sintéticos desarrollados por programas de mejoramiento (Matsumoto et al. 1999, Cárdenas 2001, Zambrano et al. 2007). Por otra parte el control biológico ha demostrado ser una alternativa de manejo de la enfermedad, se ha comprobado la presencia de hongos y bacterias asociados al sistema radical del banano y su efecto como agentes de biocontrol sobre *Fusarium oxysporum* f. sp. *cubense* registrándose buenos niveles de control de la enfermedad (Rutherford y Kangire 1998, Pocasangre 2000, Kidane y Laing 2008).
El presente documento es el resultado del trabajo de investigación realizado en el Laboratorio de Nematología y Fitopatología del CATIE durante el tópico especial “Aislamientos y pruebas in vitro del hongo *Fusarium oxysporum* f. sp. *cubense* (FOC) en banano”.

1.1 Objetivos

1.1.1 Objetivo general

Adquirir destrezas en trabajo de laboratorio y conocer protocolos metodológicos relacionados con el hongo *Fusarium oxysporum* f. sp. *cubense* y otros.

1.1.2 Objetivos específicos

Realizar aislamientos del hongo *Fusarium oxysporum* f. sp. *cubense* a partir de plantas enfermas de banano del cultivar ‘Gros Michel’ (AAA).

Caracterizar aislamientos de *Fusarium oxysporum* f. sp. *cubense* e identificar sus estructuras reproductivas.

Determinar el potencial de antibiosis de 20 bacterias endofíticas sobre tres aislamientos de *Fusarium oxysporum* f. sp. *cubense* en condiciones in vitro.

Realizar una revisión de literatura sobre *Fusarium oxysporum* f. sp. *cubense* y organizar la información y resultados encontrados durante la investigación.
2 REVISIÓN DE LITERATURA

2.1 El Mal de Panamá y su importancia económica

El Mal de Panamá fue descrito por primera vez en Australia en 1874 (Stover y Simmonds 1987, Moore et al. 1995, Ploetz 2006) y posteriormente fue reportado en Panamá (1890), Suriname (1906), Cuba, Puerto Rico, Jamaica y América Central (1910), La India (1911) y Colombia (1954). En la actualidad esta enfermedad se encuentra en todas las áreas donde se cultiva banano a excepción de las Islas del Pacífico Sur incluyendo a Papua Nueva Guinea y las Islas de Borneo; Somalia y algunos países bordeados por el Mediterráneo (Stover y Simmonds 1987, Moore et al 1995).

Se ha documentado que entre 1890 y mediados de los años 50 el Mal de Panamá destruyó más de 40000 ha del cultivar ‘Gros Michel’ (AAA) (Stover 1962), lo cual trajo como consecuencia el abandono de las plantaciones de banano y el establecimiento de nuevas áreas de producción en suelos vírgenes; sin embargo, estas fueron atacadas por Fusarium por lo que la variedad ‘Gros Michel’ (AAA) fue reemplazada por cultivares del subgrupo Cavendish transformándose totalmente la forma cómo se realizada la producción y comercialización de banano (Stover 1986, Ploetz 1994).

Actualmente esta enfermedad continúa siendo un problema especialmente para pequeños productores que cultivan variedades susceptibles bajo sistemas de producción orgánicos en asocio con café y cacao (Silagyi 2002). Adicionalmente, la raza 4 de FOC, ausente en América, ha causado importantes pérdidas en plantaciones de Malasia e Indonesia, más de 8 millones de plantas en sistemas tradicionales y más de 5000 ha de plantaciones comerciales del cultivar Cavendish han sido afectadas, con pérdidas anuales que superan los 75 millones de dólares, afectando además los ingresos de las familias y trabajadores (Pérez 2004). La introducción de esta raza a América tendría un importante impacto económico y social no sólo a nivel de la industria bananera sino también sobre pequeños productores en Centro y Sur América, Sureste de Asia y África que dependen de este cultivo (Pocasangre 2000).
2.2 Razas fisiológicas de *Fusarium oxysporum f. sp. cubense*

Se reconocen cuatro razas de *Fusarium oxysporum f. sp. cubense*, tres de ellas afectan a las especies de *Musa*; la raza 1 ataca a ‘Gros Michel’ (AAA), Silk, Pome y Lady Finger (AAB); la raza 2 ataca a los bananos de cocción tipo Bluggoe y clones (ABB) estrechamente relacionados; la raza 3 afecta principalmente a *Heliconia* spp. (Waite 1977) y a la raza 4 ataca a los cultivares del subgrupo Cavendish (AAA) y a todos los cultivares susceptibles a la raza 1 y raza 2 del patógeno (Stover 1986, Persley y De Langhe 1987, Ploetz 1990, Ploetz 1994).

2.3 Biología de *Fusarium oxysporum f. sp. cubense*

El hongo *Fusarium oxysporum f. sp. cubense* pertenece a la sección Elegans del género *Fusarium* (Stover 1962), habita en el suelo y se caracteriza por producir micro y macroconidios sobre monofiálides ramificadas o no ramificadas. Los microconidios presentan una forma ovalada y están constituidas por una o dos células, mientras que los macroconidios en forma de hoz presentan de 4 a 8 células. Las clamidiosporas son usualmente globosas y se forman individualmente o en pares en hifas (Nelson 1981); estas esporas constituyen estructuras de resistencia del hongo debido a que pueden permanecer en el suelo por más de 30 años alojados en rastrojos de las plantas infectadas o en las raíces de los hospederos alternativos haciendo imposible volver a sembrar cultivares susceptibles en el mismo lugar (Moore *et al.* 1995, Davis 2005).

2.4 Penetración y traslocación del hongo en la planta

Fusarium oxysporum f. sp. cubense penetra a la planta de banano a través de las raíces especialmente de las raicillas laterales, también lo hace por las raíces muertas o por las raíces dañadas de las cuales pasará al cormo e invadirá los vasos del xilema (Beckman y Talboys 1990). Fusarium coloniza los vasos del cormo destruyendo las yemas laterales y se trasloca a lo largo de los haces vasculares hacia otras partes del cormo, vainas foliares del pseudotallo, posteriormente a la parte superior de la planta y finalmente a las hojas (Davis 2005, Nel 2006).
2.5 Síntomas del Mal de Panamá

Los síntomas externos del Mal de Panamá aparecen inicialmente en forma de un amarillamiento de las hojas más viejas a lo largo del margen foliar y continúa hacia la nervadura central hasta finalmente quedar completamente seca y de color café (Brandes 1919, Stover 1962, Thurston 1989); este amarillamiento se extiende desde las hojas más viejas hacia las más jóvenes ocasionando que en sus inicios sea confundido con los producidos en deficiencia de potasio, especialmente bajo condiciones de sequía y frío (Moore et al. 1995). Las hojas colapsan gradualmente en la unión del pecíolo con el pseudotallo quedando colgadas alrededor del pseudotallo (Brandes 1919, Stover 1962) El desarrollo de la planta no se detiene con la infección, las hojas nuevas que emergen son descoloridas y su lámina puede reducirse en forma apreciable, así como mostrar arrugas y deformaciones. Puede o no manifestarse un agrietamiento en la base del pseudotallo (Moore et al. 1995) (Figura 1).

Los síntomas internos consisten en una decoloración vascular en el interior del pseudotallo; líneas de color marrón, rojo o amarillo son visibles solamente en las vainas externas o en estado muy avanzado puede alcanzar hasta las vainas internas. En el cormo los síntomas son parecidos a los del pseudotallo, estrías necróticas, oscuras o azuladas pueden observarse sobre un fondo blanco (Wardlaw 1961, Stover 1962) (Figura 1).

![Figura 1. Síntomas de Mal de Panamá en el cultivar ‘Gros Michel’](image)
2.6 Mecanismos de manejo de la enfermedad

En la actualidad no existen medidas de control químico efectivo para el Mal de Panamá (Sivamani y Gnanamanickam 1988, Getha y Vikineswary 2002, Ploetz 2006). Sin embargo, existen varias prácticas que a través de la creación de ambientes desfavorables para el patógeno evitan el desarrollo y la propagación de la enfermedad (Sivamani 1988, Getha y Vikineswary 2002, Pérez et al. 2003).

2.6.1 Resistencia genética

Varios estudios han centrado sus esfuerzos en la búsqueda de fuentes naturales de resistencia al patógeno en especies y cultivares silvestres. Así mismo a través de la utilización de herramientas biotecnológicas se han seleccionado plantas de banano in vitro resistentes al Mal de Panamá (Matsumoto et al 1999, Cárdenas 2001), así como también se han identificado cultivares resistentes a las razas 1 y 4 de FOC, como los FHIA-01 y Formosana (Rutherford et al 1998) que han servido como sustento para la alimentación de la población de África; sin embargo, a nivel comercial estos cultivares no tienen aceptación por sus pobres características organolépticas. Hasta el momento no existe un cultivar resistente que presente la alta calidad del subgrupo Cavendish más aún la del cultivar Gros Michel.

2.6.2 Control cultural

La práctica cultural más extensiva aplicada en los años 60 para el control de la enfermedad fue el barbecho inundado, pero resultó ser muy costoso dada la alta inversión en canales de riego (Stover 1962). La utilización de plantas sanas provenientes de cultivo de tejidos constituye una buena estrategia para evitar la diseminación del patógeno, sin embargo, en suelos contaminados por Fusarium, las vitroplantas son más susceptibles que las plantas provenientes de cormos (Smith 1998). Medidas cuarentenarias y la eliminación de plantas enfermas también son prácticas efectivas que impiden el movimiento de material infectado hacia áreas limpias (Seshu et al. 1998, Rutherford y Kangire. 1998).
2.6.3 Control biológico

La utilización de microorganismos antagonistas en la supresión de Fusarium oxysporum f. sp. cubense constituye una alternativa para el manejo de esta enfermedad. Investigaciones han demostrado que hongos endofíticos aislados de raíces sanas pueden ser utilizados como agentes biológicos de control de la enfermedad; como ocurre con varias cepas no patogénicas de Fusarium oxysporum (Pocasangre 2000, Kidane y Laing 2008), los hongos Trichoderma harzianum (Pérez et al. 2003, Sivan y Chet 1989) y Streptomyces violaceusniger (Getha y Vikineswary 2002) los cuales han registrado buenos niveles de control de la enfermedad.

Por otra parte bacterias endofíticas presentes en la superficie de las raíces de las plantas, conocidas como bacterias promotoras del crecimiento o PGPR (por sus siglas en inglés, que significan plant growth promoting rhizobacteria, o rizobacteria promotora del crecimiento vegetal) tales como Pseudomonas y Bacillus además de influir positivamente en el crecimiento y desarrollo de las plantas producen metabolitos secundarios que funcionan como antagonistas de nematodos y enfermedades fungosas, incluyendo al patógeno Fusarium oxysporum (Sivamani 1988, Van Loon et al. 1998 Ramamoorthy et al. 2001, Kloeper et al. 2004).
3 MATERIALES Y MÉTODOS

3.1 Ubicación geográfica del trabajo de investigación

El trabajo de investigación correspondiente al tópico especial se realizó en el laboratorio de Nematología y Fitopatología del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), en el cual se efectuaron diferentes estudios y pruebas in vitro con la raza 1 del hongo *Fusarium oxysporum* f. sp. *cubense*.

3.2 Aislamiento del hongo *Fusarium oxysporum* f. sp. *cubense*

3.2.1 Toma de muestras de plantas afectadas por *Fusarium oxysporum* f. sp. *cubense*

En tres sectores de la finca del CATIE correspondientes a sistemas agroforestales de cacao se identificaron plantas de banano del cultivar Gros Michel (AAA) con síntomas externos e internos producidos por *Fusarium oxysporum* f. sp. *cubense* (FOC). En cada sector se seleccionaron dos plantas de banano de las cuales se recolectaron muestras del pseudotallo y del cormo i.e. corteza y cilindro central (Figura 2), las mismas que fueron llevadas al laboratorio de Nematología y Fitopatología para realizar el aislamiento de FOC correspondiente a la raza 1 del patógeno.
3.2.2 **Procesamiento de las muestras en el laboratorio**

Cada muestra del pseudotallo y cormo (corteza y cortex) se cortó en secciones de 1 cm³ las cuales se lavaron con agua potable durante tres minutos con agitación constante. Posteriormente, bajo condiciones asépticas, las secciones fueron sumergidas durante tres minutos en una solución de hipoclorito de sodio al 1.5 % con agitación constante; seguidamente se hicieron tres lavados con agua destilada estéril, por tres minutos cada uno. Por cada muestra de tejido vegetal (pseudotallo, corteza y cortex) se cultivaron cinco secciones en cajas Petri conteniendo medio de cultivo PDA al 100% (Figura 3). Cada caja se selló con parafilm y se almacenó a 24 °C por 72 horas (Anexo 1).

Figura 3. Protocolo para el aislamiento del hongo Fusarium oxysporum f. sp. cubense

3.2.3 **Determinación del porcentaje de colonización de Fusarium oxysporum f. sp. cubense**

Cumplido el periodo de almacenamiento, en cada sección de tejido vegetal se observó el crecimiento del micelio del hongo *Fusarium oxysporum* f. sp. *cubense* y se determinó el
porcentaje de colonización de FOC dividiendo la cantidad de segmentos colonizados por el hongo entre el total de segmentos evaluados y el resultado obtenido se multiplicó por 100.

3.2.4 *Purificación de Fusarium oxysporum f. sp. cubense*

La purificación del hongo *Fusarium oxysporum* f. sp. *cubense* consistió en pasar una pequeña porción del micelio desarrollado sobre las secciones de tejido vegetal de cada muestra a cajas Petri que contenía medio PDA al 100% hasta obtener cultivos puros.

3.2.5 *Identificación de seis aislamientos de Fusarium oxysporum f. sp. cubense*

Se seleccionaron cultivos puros de *Fusarium oxysporum* f. sp. *cubense* provenientes de cada muestra de pseudotallo, los cuales constituieron seis aislamientos de FOC y se identificaron con los códigos FOC 4 al FOC 9; estos aislamientos se sumaron a tres aislamientos de *Fusarium oxysporum* f. sp. *cubense* (FOC 1, FOC 2 y FOC 3) presentes la colección de cepas del Laboratorio de Nematología y Fitopatología del CATIE.

3.3 *Caracterización de nueve aislamientos de Fusarium oxysporum f. sp. cubense y reconocimiento de sus estructuras reproductivas*

Para determinar la apariencia del micelio así como la pigmentación de cada aislamiento se observaron macroscópicamente cultivos de FOC de dos semanas de crecimiento en Potato Dextrosa Agar (PDA); así mismo, con base a la producción de compuestos volátiles los aislamientos fueron clasificados dentro del grupo "odoratum", si producían un olor aromático similar a algunos aldehídos o en el grupo "inodoratum" si no los producían. Por otra parte bajo el microscopio se observaron el micelio, microconidios, macrocronidios y clamidiosporas de cada aislamiento de FOC.

3.4 *Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo*

Para la determinación de las unidades formadoras de colonias (ufc) se realizó una suspensión de esporas con cultivos de FOC de dos semanas de crecimiento en PDA al 100%, para lo cual a cada caja Petri se agregó 20 ml de agua destilada y con la
ayuda de una espátula plástica se removió las esporas y el micelio. La solución obtenida se filtró en un beaker por medio de una gasa y se llevó a un volumen de 100 ml con agua destilada. Por cada aislamiento se realizó el conteo de las ufc utilizando un hematocímetro de Neubauer en un microscopio Olympus BH2 con aumento 40x (Figura 4).

Figura 4. Protocolo para el recuento de ufc y determinación del potencial de inóculo de los aislamientos de Fusarium oxysporum f. sp. cubense

3.5 Establecimiento de un criobanco

Con el objetivo de almacenar y preservar a largo plazo la colección de aislamientos de Fusarium oxysporum f. sp. cubense se inoculó asépticamente tubos de criobanco con colonias de cultivo puro de cada aislamiento de FOC y se almacenaron en un congelador (Figura 5).
3.6 Prueba de antibiosis sobre tres aislamientos de FOC

Inicialmente se identificaron 20 bacterias endófitas provenientes de fincas comerciales de banano de la Zona Atlántica de Costa Rica (Cuadro 1) que presentaron actividad biológica como agentes de biocontrol en pruebas in vitro e in vivo realizadas en el Laboratorio de Nematología y Fitopatología del CATIE en el año 2008. Por otra parte se seleccionaron tres aislamientos que presentaron la mayor producción de unidades formadoras de colonias (ufc) en la prueba de potencial de inóculo.

Para la prueba de antibiosis se colocó un disco de agar de 0,5 cm de diámetro, conteniendo micelio, microconidios y macroconidios de FOC de dos semanas de crecimiento, al extremo de un caja Petri con PDA al 100% y sin ácido láctico; simultáneamente al extremo opuesto con una asa esterilizada se colocó una barrera de bacteria endófita de una semana de crecimiento. Cada caja fue sellada con parafilm y almacenada a 26 °C por 21 días. Se realizaron cuatro repeticiones por cada tratamiento (Figura 6).

Cuadro 1. Bacterias endófitas evaluadas durante el trabajo de investigación

<table>
<thead>
<tr>
<th>Finca</th>
<th>Código</th>
<th>Género</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartagena</td>
<td>F7 – B13</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Eresfuerza</td>
<td>F1 – P15</td>
<td>Pseudomonas spp.</td>
</tr>
<tr>
<td>San Paulo</td>
<td>F6 – B5</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Cartagena</td>
<td>F7 – B10</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Orgánica</td>
<td>F.O 19</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Eresfuerza</td>
<td>F1 – B7</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Calinda</td>
<td>F4 – B40</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Cartagena</td>
<td>F7 – B15</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>San Paulo</td>
<td>F6 – B25</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Cartagena</td>
<td>F7 – B6</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Carmen</td>
<td>F9 – B62</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Cartagena</td>
<td>F7 – B9</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Orgánica</td>
<td>F.O 25</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Variedades</td>
<td>F2 – PA15</td>
<td>Pseudomonas spp</td>
</tr>
<tr>
<td>Eresfuerza</td>
<td>F1 – B9</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Orgánica</td>
<td>F.O 4</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Cartagena</td>
<td>F7 – B14</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Cartagena</td>
<td>F7 – B3</td>
<td>Bacillus spp.</td>
</tr>
<tr>
<td>Palo Verde</td>
<td>F3 – P2</td>
<td>Pseudomonas spp</td>
</tr>
<tr>
<td>Cartagena</td>
<td>F7 – B5</td>
<td>Bacillus spp.</td>
</tr>
</tbody>
</table>

Figura 5. Protocolo para el establecimiento de un criobanco
El crecimiento radial del hongo se midió cada siete días con la ayuda de una regla a la izquierda y derecha del centro del disco de agar. A los 21 días de cocultivo se determinó el peso fresco y peso seco del micelio de hongo, para lo cual se removió todo el micelio y las esporas del hongo. La solución se filtró en un beaker con la ayuda de un papel filtro y la cantidad de micelio del hongo se pesó después de 15 minutos de filtrado; posteriormente el peso seco se determinó sometiendo la muestra a 70 °C por 24 horas en un horno de desecación (Figura 7).

3.7 Análisis estadístico

Se realizaron Análisis de Varianza individual para las variables que se estudiaron en cada prueba y determinar si existen diferencias significativas entre los promedios de los tratamientos. Los datos fueron analizados mediante el programa estadístico INFOSTAT 2008.
3.7.1 Porcentaje de colonización y potencial de inóculo

Para la determinación del porcentaje de colonización y la prueba del potencial de inóculo se utilizó un diseño completamente aleatorizado con cuatro y dos repeticiones respectivamente.

El modelo estadístico para este arreglo de tratamientos fue el siguiente:

\[Y_{ij} = \mu + T_i + E_{ij} \]

donde:

- \(Y_{ij} \) = Variable repuesta
- \(\mu \) = Media general
- \(T_i \) = Efecto del \(i \)-ésimo tratamiento
- \(E_{ij} \) = Término de error independiente, supuestamente distribuido normal, con media cero y varianza constante

3.7.2 Prueba de antibiosis

Para la prueba de antibiosis se utilizó un diseño completamente aleatorizado con un arreglo factorial 3x20 con cuatro repeticiones para un total de 240 unidades experimentales. Los factores analizados correspondieron a los 3 aislamientos de FOC que presentaron mayores producciones de unidades formadoras de colonias (ufc) y a las 20 bacterias endofíticas (Cuadro 1).

El modelo estadístico para este arreglo de tratamientos fue el siguiente:

\[Y_{ijk} = \mu + F_i + B_j + F_iB_j + E_{ijk} \]

donde:

- \(Y_{ijk} \) = Variable repuesta
- \(\mu \) = Media general
- \(F_i \) = Efecto del \(i \)-ésimo nivel del factor aislamiento de FOC
- \(B_j \) = Efecto del \(j \)-ésimo nivel del factor bacteria endofítica
- \(F_iB_j \) = Efecto de la interacción aislamiento de FOC - bacteria endofítica
E_{ij} = \text{Término de error independiente, supuestamente distribuido normal, con media cero y varianza constante}
4 RESULTADOS

4.1 Aislamientos de *Fusarium oxysporum* f. sp. *cubense*

A partir de plantas enfermas de banano del cultivar Gros Michel se obtuvieron seis aislamientos del hongo *Fusarium oxysporum* f. sp. *cubense* los cuales fueron identificados con los códigos FOC 4 al FOC 9 (Cuadro 2) y se encuentran almacenados en un criobanco del Laboratorio de Nematología y Fitopatología del CATIE.

Cuadro 2. Aislamientos de *Fusarium oxysporum* f. sp. *cubense* recolectados en tres sectores de la finca del CATIE

<table>
<thead>
<tr>
<th>Código</th>
<th>Procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOC 4</td>
<td>Cabiria 1</td>
</tr>
<tr>
<td>FOC 5</td>
<td>Cabiria 1</td>
</tr>
<tr>
<td>FOC 6</td>
<td>Cabiria 2</td>
</tr>
<tr>
<td>FOC 7</td>
<td>Cabiria 2</td>
</tr>
<tr>
<td>FOC 8</td>
<td>La Montaña</td>
</tr>
<tr>
<td>FOC 9</td>
<td>La Montaña</td>
</tr>
</tbody>
</table>

4.2 Porcentaje de colonización

En general los tejidos de la planta i.e. pseudotallo, corteza y cilindro central fueron colonizados por *Fusarium oxysporum* f. sp. *cubense*. Los mayores porcentajes de colonización lo presentaron en el pseudotallo los aislamientos FOC 5, FOC 7 y FOC 6; mientras que en el cilindro central y corteza todos los aislamientos tuvieron altos porcentajes de colonización, a excepción de FOC 9 que no colonizó la corteza; pudiendo deberse al deterioro de la muestra ocasionado por bacterias (Cuadro 3).

4.3 Caracterización de nueve aislamientos de *Fusarium oxysporum* f. sp. *cubense* y reconocimiento de sus estructuras reproductivas

Todos los aislamientos presentaron el micelio con apariencia algodonosa; sin embargo, la coloración de las colonias varió entre ellos; FOC4 y FOC 8 presentaron una pigmentación del micelio en tonos violeta, mientras que FOC 9 presentó una pigmentación violeta intenso; el
resto de aislamientos exhibieron tonos amarillos pálidos (Figura 8). Respecto a clasificación de los aislamientos basándose en la producción de compuestos volátiles todos los aislamientos pertenecieron al grupo “odoratum”.

Las estructuras reproductivas de los aislamientos observados fueron micelio, microconidios, macroconidios y clamidiosporas. Los microconidios presentaron una forma ovalada, los macroconidios fueron curvados similares a la forma de una hoz, pluriseptados (Figura 9). No se observaron diferencias en las estructuras reproductivas entre los aislamientos.

Cuadro 3. Porcentaje de colonización de FOC en los tejidos vegetales de plantas enfermas

<table>
<thead>
<tr>
<th>FOC</th>
<th>Pseudotallo</th>
<th>Corteza</th>
<th>Cilindro central</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>45 a</td>
<td>100 b</td>
<td>100 a</td>
</tr>
<tr>
<td>9</td>
<td>50 a</td>
<td>0 a</td>
<td>100 a</td>
</tr>
<tr>
<td>8</td>
<td>50 a</td>
<td>100 b</td>
<td>80 a</td>
</tr>
<tr>
<td>5</td>
<td>90 b</td>
<td>100 b</td>
<td>90 a</td>
</tr>
<tr>
<td>7</td>
<td>100 b</td>
<td>100 b</td>
<td>100 a</td>
</tr>
<tr>
<td>6</td>
<td>100 b</td>
<td>100 b</td>
<td>100 a</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (p ≤ 0.05)
Figura 8 Aislamientos de Fusarium oxysporum f. sp. cubense

4.4 Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo

Los resultados obtenidos en el conteo de ufc demuestran que FOC 4 y FOC 8 presentan un mayor potencial de inóculo en comparación con el resto de aislamientos (Cuadro 4).

Cuadro 4. Unidades formadoras de colonias (ufc) de nueve aislamientos de FOC

<table>
<thead>
<tr>
<th>FOC</th>
<th>ufc/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.56x10^6</td>
</tr>
<tr>
<td>8</td>
<td>4.62x10^6</td>
</tr>
<tr>
<td>9</td>
<td>4.25x10^6</td>
</tr>
<tr>
<td>3</td>
<td>3.88x10^6</td>
</tr>
<tr>
<td>7</td>
<td>3.75x10^6</td>
</tr>
<tr>
<td>2</td>
<td>3.62x10^6</td>
</tr>
<tr>
<td>1</td>
<td>3.38x10^6</td>
</tr>
<tr>
<td>5</td>
<td>2.56x10^6</td>
</tr>
<tr>
<td>6</td>
<td>1.38x10^6</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (p<= 0.05)
4.5 Prueba de antibiosis sobre tres aislamientos de FOC

Existieron bacterias cuyo efecto en el crecimiento radial de los tres aislamientos de FOC fue similar, sin embargo, el efecto de otras bacterias varió con cada aislamiento de FOC. Tal es el caso de la bacteria F7B9 que ocasionó un menor crecimiento radial para los tres aislamientos de FOC, mientras que la bacteria F9B62 produjo un menor crecimiento radial para FOC 8 y FOC 4, mas no de FOC 9. Esto sugiere que el efecto de ciertas bacterias endófitas sobre el crecimiento radial de *Fusarium oxysporum* f. sp. *cubense* difiere dependiendo del aislamiento de FOC con el cual se cocultive (Cuadro 5).

Cuadro 5. Crecimiento radial de tres aislamientos de Fusarium oxysporum f. sp. cubense medido en la prueba de antibiosis a los 14 días de evaluación

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Longitud (cm)</th>
<th>Tratamiento</th>
<th>Longitud (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F7B9 - FOC 8</td>
<td>3,03 a</td>
<td>F1B7 - FOC 4</td>
<td>4,80 bcdefghijklmno</td>
</tr>
<tr>
<td>F7B9 - FOC 4</td>
<td>3,18 ab</td>
<td>F7B13 - FOC 9</td>
<td>4,83 bcdefghijklmno</td>
</tr>
<tr>
<td>F7B5 - FOC 4</td>
<td>3,35 abc</td>
<td>F1B7 - FOC 9</td>
<td>4,93 cdefghijklmnop</td>
</tr>
<tr>
<td>F6B25 - FOC 4</td>
<td>3,45 abc</td>
<td>F2PA15 - FOC 8</td>
<td>4,95 cdefghijklmnop</td>
</tr>
<tr>
<td>F7B10 - FOC 4</td>
<td>3,48 abcd</td>
<td>F7B10 - FOC 8</td>
<td>5,38 defghijklmnop</td>
</tr>
<tr>
<td>F7B9 - FOC 9</td>
<td>3,57 abcde</td>
<td>F7B15 - FOC 4</td>
<td>5,23 efgijklmnop</td>
</tr>
<tr>
<td>F7B3 - FOC 4</td>
<td>3,65 abcdef</td>
<td>F4B40 - FOC 8</td>
<td>5,23 efgijklmnop</td>
</tr>
<tr>
<td>F7B15 - FOC 9</td>
<td>3,65 abcdef</td>
<td>F7B6 - FOC 8</td>
<td>5,23 efgijklmnop</td>
</tr>
<tr>
<td>F9B62 - FOC 4</td>
<td>3,70 abcdef</td>
<td>FO25 - FOC 4</td>
<td>5,33 fghijklmnop</td>
</tr>
<tr>
<td>F6B25 - FOC 9</td>
<td>3,70 abcdef</td>
<td>F7B6 - FOC 9</td>
<td>5,33 fghijklmnop</td>
</tr>
<tr>
<td>F6B25 - FOC 8</td>
<td>3,73 abcdefg</td>
<td>FO25 - FOC 8</td>
<td>5,43 ghijklmnop</td>
</tr>
<tr>
<td>F7B14 - FOC 8</td>
<td>3,73 abcdefg</td>
<td>F2PA15 - FOC 9</td>
<td>5,55 hijklmnop</td>
</tr>
<tr>
<td>F1P15 - FOC 4</td>
<td>3,78 abcdefg</td>
<td>FO4 – FOC 8</td>
<td>5,67 ijklmnop</td>
</tr>
<tr>
<td>F7B13 - FOC 8</td>
<td>3,78 abcdefg</td>
<td>FO19 - FOC 4</td>
<td>5,73 ijklnop</td>
</tr>
<tr>
<td>F7B14 - FOC 4</td>
<td>3,80 abcdefg</td>
<td>FO19 - FOC 8</td>
<td>5,83 jklnop</td>
</tr>
<tr>
<td>F7B5 - FOC 8</td>
<td>3,93 abcdefgh</td>
<td>F1B7 - FOC 8</td>
<td>5,90 klnop</td>
</tr>
<tr>
<td>F7B5 - FOC 9</td>
<td>4,05 abcdefghi</td>
<td>F6B5 - FOC 8</td>
<td>5,93 lmnop</td>
</tr>
<tr>
<td>F4B40 - FOC 4</td>
<td>4,05 abcdefghi</td>
<td>F3P2 - FOC 8</td>
<td>5,98 klnop</td>
</tr>
<tr>
<td>F4B40 - FOC 9</td>
<td>4,05 abcdefghi</td>
<td>F6B5 - FOC 4</td>
<td>6,00 lmnop</td>
</tr>
<tr>
<td>F7B14 - FOC 9</td>
<td>4,08 abcdefghi</td>
<td>F7B15 - FOC 8</td>
<td>6,00 lmnop</td>
</tr>
<tr>
<td>F7B10 - FOC 9</td>
<td>4,13 abcdefghij</td>
<td>FO4 - FOC 4</td>
<td>6,07 mnop</td>
</tr>
<tr>
<td>F1P15 - FOC 8</td>
<td>4,15 abcdefghij</td>
<td>FO19 - FOC 9</td>
<td>6,20 mnop</td>
</tr>
<tr>
<td>F7B3 - FOC 8</td>
<td>4,15 abcdefghij</td>
<td>F9B62 - FOC 9</td>
<td>6,20 nop</td>
</tr>
</tbody>
</table>
Para las variables peso fresco y seco del micelio de los aislamientos de FOC no se presentó interacción entre los factores bacteria endofítica y FOC. El aislamiento FOC 9 produjo significativamente un mayor peso fresco y seco del micelio en comparación con FOC 4 y FOC 8 (Cuadro 6). Por otra parte el efecto de las bacterias endofíticas sobre el peso fresco y seco del micelio fue diferente independientemente del aislamiento con el cual se cocultive; las bacterias F3P2, F7B15, F7B5, F1B9 presentaron un menor peso fresco del micelio (Cuadro 7).

Cuadro 6. Peso fresco y seco del micelio de tres aislamientos de Fusarium oxysporum f. sp. cubense en la prueba de antibiosis a los 21 días de evaluación

<table>
<thead>
<tr>
<th>FOC</th>
<th>Peso fresco (g)</th>
<th>Peso seco (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0,49 a</td>
<td>0,02 a</td>
</tr>
<tr>
<td>4</td>
<td>0,52 a</td>
<td>0,02 a</td>
</tr>
<tr>
<td>9</td>
<td>1,06 b</td>
<td>0,07 b</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (p<= 0,05)
Cuadro 7. Peso fresco y seco del micelio de *Fusarium oxysporum* f. sp. *cubense* en la prueba de antibiosis a los 21 días de evaluación

<table>
<thead>
<tr>
<th>Bacteria endofítica</th>
<th>Peso fresco (g)</th>
<th>Peso seco (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 P2</td>
<td>0,47 a</td>
<td>0,02 a</td>
</tr>
<tr>
<td>F7 B15</td>
<td>0,50 a</td>
<td>0,02 ab</td>
</tr>
<tr>
<td>F7 B5</td>
<td>0,55 a</td>
<td>0,02 ab</td>
</tr>
<tr>
<td>F1 B9</td>
<td>0,55 a</td>
<td>0,02 ab</td>
</tr>
<tr>
<td>F6 B25</td>
<td>0,57 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>F7 B9</td>
<td>0,59 ab</td>
<td>0,02 ab</td>
</tr>
<tr>
<td>F7 B14</td>
<td>0,63 ab</td>
<td>0,02 ab</td>
</tr>
<tr>
<td>F7 B13</td>
<td>0,63 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>F4 B40</td>
<td>0,63 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>F1 P15</td>
<td>0,63 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>F7 B10</td>
<td>0,66 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>F6 B5</td>
<td>0,72 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>F7 B3</td>
<td>0,72 ab</td>
<td>0,04 b</td>
</tr>
<tr>
<td>F7 B6</td>
<td>0,74 ab</td>
<td>0,23 c</td>
</tr>
<tr>
<td>F1 B7</td>
<td>0,78 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>FO19</td>
<td>0,78 ab</td>
<td>0,04 ab</td>
</tr>
<tr>
<td>F9B62</td>
<td>0,81 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>FO 25</td>
<td>0,82 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>FO4</td>
<td>0,87 ab</td>
<td>0,03 ab</td>
</tr>
<tr>
<td>F2 PA5</td>
<td>1,17 b</td>
<td>0,03 ab</td>
</tr>
</tbody>
</table>

Letras distintas indican diferencias significativas (p ≤ 0,05)
5 DISCUSIÓN

5.1 Porcentaje de colonización

Si bien todos los tejidos de la planta fueron colonizados por *Fusarium oxysporum* f. sp. *cubense*, FOC 9 no colonizó la corteza debido a que la muestra recolectada permaneció mayor tiempo almacenada lo cual provocó el deterioro de esta. Orjeda (1998) indica que la pérdida de variabilidad de *Fusarium oxysporum* f. sp. *cubense* dentro de las muestras puede disminuirse si éstas se preparan rápidamente después de su recolección. Así mismo existe información del alto riesgo de contaminación bacterial de muestras de tejido vegetal y su rápido deterioro especialmente en climas cálidos (Pocasangre 2000).

5.2 Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo

Pittaway *et al.* (1999) sugiere que la severidad de la enfermedad asociada con *Fusarium oxysporum* f. sp. *cubense* puede ser proporcional a la población del fitopatógeno en el suelo. Por lo tanto evidenciar el potencial de inóculo de los nueve aislamientos podría ser importante para predecir la actividad e invasión del patógeno y la incidencia del Mal de Panamá en plantas de banano susceptibles. Por otra parte, un alto número de ufc, indica que se requerirá menor cantidad de inóculo para infectar las plantas de banano al realizar la prueba de patogenicidad.

5.3 Prueba de antibiosis sobre tres aislamientos de FOC

Según los resultados existen bacterias endofíticas que ocasionan un menor crecimiento radial de los tres aislamientos de FOC, mientras que el efecto de otras difiere con cada aislamiento de FOC. Por otra parte, el efecto de las bacterias sobre el peso fresco y seco fue independiente del aislamiento de FOC evaluado; las bacterias F3P2, F7B15, F7B5, F1B9 presentaron un menor peso fresco del micelio de los aislamientos evidenciando posiblemente la capacidad antagónica de las bacterias y su potencial efecto como agentes de biocontrol sobre los tres aislamientos.
6 CONCLUSIONES

6.1 Porcentaje de colonización

Todos los tejidos de la planta recolectados de plantas de banano enfermas fueron colonizados por *Fusarium oxysporum* f. sp. *cubense*.

En el pseudotallo los aislamientos FOC 5, FOC 7 y FOC 6 presentaron significativamente mayores porcentajes de colonización, mientras que en la corteza y cilindro central todos los aislamientos fueron similares.

6.2 Caracterización de nueve aislamientos de *Fusarium oxysporum* f. sp. *cubense* y reconocimiento de estructuras reproductivas

Todos los aislamientos presentan el micelio con apariencia algodonosa, con colonias que varían en su coloración, de tonos violeta a amarillos pálidos. Así mismo con base a la producción de sustancias volátiles los nueve aislamientos fueron clasificados en el grupo ‘odoratum’.

Las estructuras reproductivas de *Fusarium oxysporum* f. sp. *cubense* presentaron iguales características entre aislamientos. Los microconidios fueron pequeños y de forma alargada, mientras que los macroconidios fueron más grandes, de forma curvada y plurisepptados.

6.3 Determinación de unidades formadoras de colonias (ufc) y potencial de inóculo

Los aislamientos fueron diferentes entre ellos en cuanto a la cantidad de ufc/ml. FOC 4 y FOC 8 tuvieron un mayor potencial de inóculo que los demás aislamientos.

6.4 Prueba de antibiosis sobre tres aislamientos de FOC

Existieron bacterias que ocasionaron un menor crecimiento radial de los tres aislamientos de FOC, sin embargo, el efecto de otras bacterias sobre el crecimiento radial del hongo varió con cada aislamiento de FOC. La bacteria endofítica F7B9 ocasionó el menor
crecimiento radial para los aislamientos de FOC; mientras que las bacterias F3P2, F7B15, F7B5, F1B9 presentaron un menor peso fresco y seco del micelio de los aislamientos de FOC.
6.5 BIBLIOGRAFÍA

Kidane, G.; Laing, M. 2008. Integrated control of Fusarium wilt of banana Pietermaritzburg, South Africa, s.e. p.56.

Ploetz, R.C. 2006. Fusarium wilt of bananas is caused by several pathogens referred to as *Fusarium oxysporum* f. sp. *cubense*. Symposium *Fusarium-Induced Diseases of Tropical Perennial Crops* 96(6):653-656.

ANEXOS
Anexo1. Protocolo para la preparación del medio Potato Dextrosa Agar (PDA) al 100% para el cultivo del hongo Fusarium oxysporum f. sp. cubense

1. Disolver 39 g de PDA Difco y 5 g de agar bacteriological en un litro de agua destilada.
2. Agitar la solución en una plancha de calentamiento hasta su ebullición.
3. Esterilizar la solución por 35 minutos en la autoclave a 120 °C y 15 psi.
4. En el interior de la cámara de flujo laminar colocar 6 gotas de ácido láctico por cada 250 ml de solución.
5. Colocar 25 ml de la solución en cajas Petri grandes esterilizadas y dejarlas reposar por unos minutos para que no se forme vapor de agua en el interior de las cajas.
6. Almacenar los medios a una temperatura de 3 a 4 °C
Anexo2. Protocolo para la preparación del medio Agar Nutritivo al 100% para el cultivo de bacterias endofíticas

1. Disolver 23 g de agar nutritivo y 5 g de agar bacteriologico en un litro de agua destilada.
2. Agitar la solución en una plancha de calentamiento hasta su ebullición.
3. Esterilizar la solución por 45 minutos en la autoclave a 120 °C y 15 psi.
7. En el interior de la cámara de flujo laminar colocar 25 ml de solución en cajas Petri grandes esterilizadas y dejarlas reposar por unos minutos para que no se forme vapor de agua en el interior de las cajas.
8. Almacenar los medios a una temperatura de 3 a 4 °C
Anexo 3. Protocolo para aislar el hongo Fusarium oxysporum f. sp. cubense de tejidos de plantas de banano variedad Gros Michel enfermas

1. Recolectar material vegetal del pseudotallo y del cormo de plantas de banano variedad Gros Michel que muestren síntomas producidos por el hongo Fusarium oxysporum f. sp. cubense.
2. Cortar el material vegetal en secciones en forma de cubo de 1 cm por lado aproximadamente.
3. Lavar las secciones por tres ocasiones con agua potable durante 1 minuto cada ocasión.
4. En el interior de una cámara de flujo laminar colocar las secciones en una solución de hipoclorito de sodio al 1.5% y agitar constantemente durante tres minutos.
5. Enjuagar las secciones con agua destilada esterilizada por tres ocasiones durante tres minutos cada una agitando constantemente.
6. Colocar las secciones sobre papel estéril para retirar el exceso de agua.
7. Retirar todos los lados de cada sección y sembrar 5 secciones en una caja Petri que contiene medio PDA al 100%.
8. Sellar cada caja Petri con papel parafilm y almacenar a 26 °C por 72 horas.