Evaluación de un ensayo de procedencias-progenies de Vochysia guatemalensis a los ocho años de edad, con fines de conversión en huerto semillero

Francisco Mesén1;
Jonathan Cornelius2

INTRODUCCION

MATERIALES Y MÉTODOS

El ensayo fue plantado en octubre de 1990 en el sitio conocido como Puerto Cajón, en la finca experimental del CATIE, Turrialba, Costa Rica, ubicado a 9°53' latitud N, 83°38' longitud O, a una altitud de 602 msnm, con una precipitación y temperatura promedio anuales de 2661 mm y 21.6 °C, respectivamente. El sitio se encuentra fuera del rango geográfico natural conocido de la especie, pero dentro de la zona de vida bmhPT (Holdridge 1967), dentro de la cual la especie crece naturalmente en otras partes de su rango (Corea snt). El sitio es plano, y antes de la plantación el área se encontraba abandonada, invadida por pasto guineo (Panicum maximum) y Musaceae. El área donde se ubicaron los bloques I a III fue plantada en 1968 con una repetición completa de un ensayo de 77 especies, la cual todavía ocupaba el sitio hasta el momento del establecimiento y fue talada antes de establecer el presente ensayo. La maleza fue cortada manualmente, seguida de una aplicación de Round up up al 1%; además, se hizo una rueda manual a 1m de diámetro alrededor de cada hoyo.

El suelo del horizonte A y el subsuelo son en general arcillosos, con mayor fertilidad en el área donde se ubican los bloques I a III (Cuadro 1).

El diseño experimental consistió de bloques completos al azar con nueve repeticiones y parcelas de seis árboles en línea por progenie, con al menos dos árboles externos de borde alrededor de todo el ensayo. Las procedencias fueron aleatorizadas dentro de cada bloque, y las progenies aleatorizadas dentro de sus respectivas procedencias. Los árboles fueron plantados a un espaciamiento de 3 x 3m.

Los tratamientos consistieron de 46 progenies de polinización abierta, derivadas de árboles más seleccionados en rodades naturales dentro de seis procedencias: Izabal, Guatemala (22 progenies); La Ceiba, Honduras (6 progenies); y cuatro procedencias costarricenses: Florencia, San Carlos (2 progenies), Guápiles (6 progenies), Siquirres (3 progenies) y San Miguel de Sarapiquí (7 progenies). Además, se incluyó un lote testigo de un árbol semillero de San Miguel de Sarapiquí, proporcionado por la Organización para Estudios Tropicales (OTS). La selección de los árboles más se basó principalmente en rectitud del fuste y superioridad en altura y dap con respecto a los árboles vecinos. Los detalles geográficos y climáticos de las procedencias se muestran en el Cuadro 2.

1 Unidad de Silvicultura de Plantaciones, Genetista Forestal, CATIE.
2 Proyecto Efectos Genéticos de la Fragmentación Forestal, CATIE, Turrialba, Costa Rica.
Cuadro 1. Características del suelo del ensayo de procedencias / progenies de *V. guatemalensis* en el CATIE, Turrialba, Costa Rica

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>pH (H₂O)</th>
<th>P (g ml⁻¹)</th>
<th>Ca (meq/100 ml suelo)</th>
<th>Mg (meq/100 ml suelo)</th>
<th>K (meq/100 ml suelo)</th>
<th>Clase textural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques I-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6.0</td>
<td>5.0</td>
<td>14.25</td>
<td>4.17</td>
<td>0.55</td>
<td>Fr. arcilloso límite arcilloso</td>
</tr>
<tr>
<td>B</td>
<td>5.8</td>
<td>2.0</td>
<td>8.75</td>
<td>1.87</td>
<td>0.29</td>
<td>Arcilloso</td>
</tr>
<tr>
<td>Bloques IV-IX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5.7</td>
<td>4.0</td>
<td>7.25</td>
<td>2.70</td>
<td>0.53</td>
<td>Arcilloso</td>
</tr>
<tr>
<td>B</td>
<td>5.5</td>
<td>2.0</td>
<td>5.50</td>
<td>1.87</td>
<td>0.32</td>
<td>Arcilloso</td>
</tr>
</tbody>
</table>

Cuadro 2. Información geográfica y climática de las procedencias incluidas en el ensayo de procedencias/progenies de *V. guatemalensis* del CATIE, Turrialba, Costa Rica.

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Latitud (N)</th>
<th>Longitud (O)</th>
<th>Precipitación promedio anual (mm)</th>
<th>Altitud (msnm)</th>
<th>Número de meses con < 80 mm lluvia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florencia, CR</td>
<td>10°22'</td>
<td>84°31'</td>
<td>3118</td>
<td>160</td>
<td>2</td>
</tr>
<tr>
<td>Guápiles, CR</td>
<td>9°31'-9°32'</td>
<td>83°42-83°43'</td>
<td>4494</td>
<td>250</td>
<td>0.4</td>
</tr>
<tr>
<td>San Miguel, CR</td>
<td>10°19'</td>
<td>84°11'</td>
<td>4532</td>
<td>500</td>
<td>0.6</td>
</tr>
<tr>
<td>Siquirres, CR</td>
<td>10°07'</td>
<td>83°32'</td>
<td>3863</td>
<td>60</td>
<td>0.3</td>
</tr>
<tr>
<td>La Ceiba, Honduras</td>
<td>15°47'</td>
<td>86°50'</td>
<td>2857</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Izabal, Guatemala</td>
<td>15°38'</td>
<td>88°32'</td>
<td>1750</td>
<td>40</td>
<td>nd*</td>
</tr>
</tbody>
</table>

* información no disponible

A los ocho años de edad fue medido el diámetro a la altura del pecho (dap) y la rectitud del fuste (escala arbitraria de 1-3, donde 1 es el más recto) de todos los árboles, además de presencia de bifurcaciones bajas. Los bloques VI a IX habían sido eliminados para la siembra de caña, de manera que el análisis incluyó únicamente los bloques I a V. Para el análisis de procedencias no fueron incluidas las procedencias Florencia y Siquirres, ya que se considera que se requiere un mínimo de cinco progenies para una muestra representativa de la procedencia (Cotterill 1990). En el análisis de las progenies sí fueron incluidos los 47 lotes de semillas.

Se realizaron análisis de varianza para dap y rectitud del fuste separadamente para procedencias y progenies, seguidos por pruebas de Tukey, usando el programa SAS (SAS Institute Inc. 1988). No se realizaron análisis para porcentaje de árboles bifurcados, ya que el porcentaje total de bifurcaciones para todo el ensayo fue menor al 2%.

Los valores genotípicos de las procedencias fueron estimados mediante la fórmula de Kung (1979):

\[Z = \mu + \left(\sigma_p^2 / (\sigma_p^2 + \sigma^2 / b) \right) (y - \mu) \]

\[\sigma_p^2 = \text{componente de varianza debido a procedencias} \]
\[\sigma^2 = \text{varianza residual} \]
\[n = \text{árboles por parcela} \]
\[b = \text{número de bloques} \]
\[\sigma_{b_i}^2 = \text{componente de varianza debido a la interacción progenie-bloque} \]

\[h^2_f = \sigma_p^2 / (\sigma^2 / nb) + (\sigma_{b_i}^2 / b) + \sigma_{f_i}^2 \]

\[\sigma_{f_i}^2 = \text{componente de varianza debido a progenies} \]
\[\sigma^2 = \text{varianza residual} \]
\[n = \text{árboles por parcela} \]
\[b = \text{número de bloques} \]
\[\sigma_{b_i}^2 = \text{componente de varianza debido a la interacción progenie-bloque} \]
También se realizaron estimaciones de heredabilidad en el sentido estricto a nivel de árbol individual (h^2) mediante la fórmula: $4\sigma^2 / \sigma_y^2 + \sigma^2_m + \sigma^2_e$ (Wright 1975, ZoBell y Talbert 1984).

La ganancia genética esperada producto del aclareo del ensayo fue estimada mediante la fórmula \(y_i = y - \bar{y} \), donde y_i = media fenotípica de las proyecciones seleccionadas, \bar{y} = media de todas las proyecciones y h^2 = heredabilidad familiar en el sentido estricto.

RESULTADOS Y DISCUSIÓN

Crecimiento

El dap promedio para el ensayo a los ocho años de edad fue de 20,2 cm y el promedio de altura, basado en una muestra aleatoria, fue de 12,8 m. Esto equivale a incrementos medios anuales de 2,5 cm en dap y 1,6 m en altura. Cornelius y Mesén (1997) informaron de incrementos de 4 cm y 2,6 m para dap y altura, respectivamente, para una replicación de este mismo ensayo en Sarapiquí, Costa Rica, a los 3,5 años de edad. En esta misma zona y para árboles de la misma edad, Montagnini et al. (1997) informaron de crecimientos medios anuales de 3,4 cm en dap y 3,3 m en altura en plantaciones puras, mientras que el incremento medio anual en dap en parcelas mixtas fue de 5,1 cm. Los menores valores encontrados en este ensayo pueden ser el resultado de la calidad de sitio, el descenso natural en crecimiento corriente debido al incremento en la edad de los árboles y en el escaso mantenimiento que sufrió el ensayo durante algunos años, como resultado de la finalización del proyecto responsable del establecimiento.

Análisis de las procedencias

El análisis de varianza detectó diferencias significativas entre procedencias, tanto para dap ($p = 0.022$) como para rectitud del fuste ($p = 0.026$). En el caso de dap, las procedencias La Ceiba, San Miguel e Izabal no mostraron diferencias significativas entre sí, pero las dos primeras fueron significativamente superiores a la procedencia Guáipes (Cuadro 3). En cuanto a rectitud del fuste, la procedencia Izabal mostró los menores valores (mayor rectitud), pero únicamente diferente de la procedencia San Miguel (Cuadro 3).

Cuadro 3. Promedios de dap, rectitud del fuste y significancia (Tukey 5%) para cuatro procedencias de 'guatemalensis' en el ensayo de procedencias - progenies en el CATIE, Turrialba, a los ocho años de edad.

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>dap (cm)</th>
<th>Rectitud*</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Ceiba</td>
<td>21,11**</td>
<td>2,05ab</td>
</tr>
<tr>
<td>San Miguel</td>
<td>21,06a</td>
<td>2,20b</td>
</tr>
<tr>
<td>Izabal</td>
<td>19,80ab</td>
<td>1,83a</td>
</tr>
<tr>
<td>Guáipes</td>
<td>18,68b</td>
<td>1,96ab</td>
</tr>
</tbody>
</table>

* Escala arbitraria 1-3, donde 1 equivale al árbol más recto
**Medias con la misma letra no son significativamente diferentes (Tukey 5%)

Los valores de heredabilidad (H^2) para las procedencias fueron de 0,69 para dap y de 0,68 para rectitud del fuste. Las diferencias entre procedencias en cuanto a dap fueron mínimas, lo cual se reflejó en la escasa ganancia genética estimada para esta característica mediante la selección entre procedencias (Cuadro 4). Las ganancias esperadas fueron mayores para rectitud del fuste (Cuadro 5). La variación dentro de procedencias fue mayor que entre procedencias, lo cual indica que es posible lograr mayores ganancias seleccionando a nivel de progenies dentro de procedencias y de individuos dentro de progenies, como es ampliamente reconocido (Shelbourne 1969, ZoBell y Talbert 1984).

En una repetición de este ensayo establecida en Sarapiquí, Costa Rica, Cornelius y Masís (1994) y Cornelius y Mesén (1997) encontraron que las procedencias locales San Miguel y Guáipes superaron significativamente en dap y altura a las procedencias Izabal y La Ceiba. El ensayo en Sarapiquí se encuentra dentro del rango natural de la especie, a menor altitud (40 msnm), con menor precipitación (3700 mm) y con suelos más ácidos (pH = 4,8) que los del presente ensayo, lo cual puede explicar el comportamiento diferencial de las procedencias en ambos sitios y refuerza una vez más la necesidad de este tipo de ensayos antes de iniciar programas de reforestación a gran escala.

Cuadro 4. Valores fenotípicos, genotípicos y ganancias genéticas esperadas para dap en el ensayo de procedencias-progenies de 'guatemalensis' en el CATIE, Turrialba, a los ocho años de edad.

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Valor fenotípico</th>
<th>Valor genotípico</th>
<th>Ganancia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm)</td>
<td>(%)</td>
</tr>
<tr>
<td>La Ceiba</td>
<td>21,11</td>
<td>20,82</td>
<td>0,66</td>
</tr>
<tr>
<td>San Miguel</td>
<td>21,06</td>
<td>20,78</td>
<td>0,62</td>
</tr>
<tr>
<td>Izabal</td>
<td>19,80</td>
<td>19,91</td>
<td>-0,25</td>
</tr>
<tr>
<td>Guáipes</td>
<td>18,68</td>
<td>19,14</td>
<td>-1,02</td>
</tr>
<tr>
<td>μ</td>
<td>20,16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 5. Valores fenotípicos, genotípicos y ganancias genéticas esperadas para rectitud del fuste en el ensayo de procedencias-progenies de *I. guatemalensis* en el CATIE, Turrialba, a los ocho años de edad

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Valor fenotípico</th>
<th>Valor genotípico</th>
<th>Ganancia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izabal</td>
<td>1,83</td>
<td>1,89</td>
<td>0,12 5,97</td>
</tr>
<tr>
<td>Guápiles</td>
<td>1,96</td>
<td>1,98</td>
<td>0,03 1,49</td>
</tr>
<tr>
<td>La Ceiba</td>
<td>2,05</td>
<td>2,04</td>
<td>-0,03 1,49</td>
</tr>
<tr>
<td>San Miguel</td>
<td>2,20</td>
<td>2,14</td>
<td>-0,13 -6,47</td>
</tr>
<tr>
<td>μ</td>
<td>2,01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La heredabilidad familiar en sentido estricto fue de 0,15 para ambas características. La heredabilidad familiar generalmente es mayor que la heredabilidad a nivel de árbol individual, y su utilización da buenos resultados para características que muestran baja heredabilidad (Zobel y Talbert 1984). La heredabilidad a nivel de árbol individual para dátil y rectitud del fuste para el presente ensayo fue de 0,03, lo cual concuerda con el concepto anterior e indica la posibilidad de obtener mayores ganancias genéticas mediante una selección inicial a nivel de progenies, seguida por la selección de individuos dentro de progenies.

La Fig. 1 muestra la dispersión de las progenies de acuerdo a su comportamiento para las dos características evaluadas. Los puntos dentro del cuadrante a) representan las progenies superiores al promedio tanto de dátil como de rectitud del fuste, en tanto que los del cuadrante d) representan aquellas inferiores al promedio de ambas características.

Las pruebas de rango múltiple mostraron la presencia de progenies superiores para dátil dentro de la mayoría de las procedencias; por ejemplo, de las 10 progenies superiores para dátil, tres corresponden a Izabal, tres a San Miguel, dos a la Ceiba, una a Siquirres y una a Guápiles, mientras que para rectitud del fuste, las progenies de Izabal mostraron consistente mejor forma que las demás; de las 10 mejores progenies para esta característica, nueve corresponden a la procedencia Izabal. La superioridad de esta procedencia en cuanto a forma del fuste también fue informada por Cornelius y Masis (1994) y Cornelius y Mesén (1997) para una repetición de este mismo ensayo en Sarapiquí, Costa Rica.

Las 10 progenies mejores en cuanto a dátil superaron en 31% a las 10 peores, y en 13% al promedio del ensayo. Con relación a rectitud del fuste, la superioridad fue de 50% y 24% respectivamente. Cornelius y Mesén (1997) informaron de valores de superioridad de 13% y 43% en dátil y rectitud, respectivamente, entre las cinco mejores y las cinco peores progenies en el ensayo establecido en Sarapiquí, a los 3,5 años de edad. El lote testigo (identificado como 'Test' en la Fig. 1), mostró valores prácticamente iguales a los promedios generales del ensayo para ambas características evaluadas. Por lo tanto, las ganancias de 13% en dátil y 24% en rectitud del fuste indicadas arriba son un ejemplo de las posibles ganancias esperadas con respecto al uso de semilla de estas progenies establecidas en un huerto semillero, con relación al uso de semilla de árboles semilleros.

Para fines de conversión del ensayo en huerto semillero, fue calculado un índice combinado para seleccionar las progenies superiores tanto para dátil como para rectitud del fuste. Considerando que la heredabilidad fue igual para ambos caracteres, se utilizó el siguiente índice aditivo:

\[(y_{\text{dátil}}-\bar{y}_{\text{dátil}})/\sigma_{\text{dátil}} + (y_{\text{rectitud}}-\bar{y}_{\text{rectitud}})/\sigma_{\text{rectitud}}. \]

Donde \(y_{\text{dátil}}\) = media de la progenie para dátil
\(\bar{y}_{\text{dátil}}\) = media general para dátil
\(\sigma_{\text{dátil}}\) = desviación estándar para dátil
\(y_{\text{rectitud}}\) = media de la progenie para rectitud del fuste
\(\bar{y}_{\text{rectitud}}\) = media general para rectitud del fuste
\(\sigma_{\text{rectitud}}\) = desviación estándar para rectitud del fuste

Este índice permitió una estandarización de los valores de ambas variables, independientemente de su magnitud. Los índices obtenidos se muestran en el Cuadro 6. Idealmente, la selección debería basarse en un índice que considere la heredabilidad, la correlación entre características y los valores económicos relativos de cada carácter (Zobel y Talbert 1984). Sin embargo, la obtención de índices económicos apropiados es un impedimento para el uso de dichos índices.

El índice utilizado en este estudio permitió la identificación de 23 progenies con índices positivos, es decir, superiores al promedio estandarizado de ambas características en conjunto. Estas se indican en el Cuadro 6 y representan las progenies ubicadas por arriba de la línea inclinada en la Fig. 1. Para fines de aclaramiento, se sugiere una selección en dos pasos, inicialmente eliminando las progenies no
Cuadro 6. Ordenamiento de las progenies de *V. guatemalensis* de acuerdo al índice combinado de dap y rectitud del fuste (ver texto para detalles del índice), Turrialba, Costa Rica.

<table>
<thead>
<tr>
<th>Progenie*</th>
<th>Indice</th>
<th>Progenie</th>
<th>Indice</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 36</td>
<td>3.32</td>
<td>C 56</td>
<td>-0.03</td>
</tr>
<tr>
<td>C 52</td>
<td>2.87</td>
<td>G 3</td>
<td>-0.08</td>
</tr>
<tr>
<td>I 32</td>
<td>2.25</td>
<td>C 54</td>
<td>-0.11</td>
</tr>
<tr>
<td>I 37</td>
<td>1.52</td>
<td>I 40</td>
<td>-0.14</td>
</tr>
<tr>
<td>I 23</td>
<td>1.49</td>
<td>C 49</td>
<td>-0.17</td>
</tr>
<tr>
<td>I 44</td>
<td>1.41</td>
<td>SM 15</td>
<td>-0.20</td>
</tr>
<tr>
<td>I 28</td>
<td>1.12</td>
<td>SM 13</td>
<td>-0.22</td>
</tr>
<tr>
<td>C 55</td>
<td>0.98</td>
<td>SM 14</td>
<td>-0.24</td>
</tr>
<tr>
<td>I 25</td>
<td>0.89</td>
<td>I 30</td>
<td>-0.33</td>
</tr>
<tr>
<td>G 20</td>
<td>0.78</td>
<td>I 42</td>
<td>-0.43</td>
</tr>
<tr>
<td>I 41</td>
<td>0.74</td>
<td>I 39</td>
<td>-0.50</td>
</tr>
<tr>
<td>I 34</td>
<td>0.72</td>
<td>Test</td>
<td>-0.55</td>
</tr>
<tr>
<td>C 57</td>
<td>0.71</td>
<td>SM 22</td>
<td>-0.56</td>
</tr>
<tr>
<td>I 35</td>
<td>0.68</td>
<td>I 45</td>
<td>-0.56</td>
</tr>
<tr>
<td>I 33</td>
<td>0.58</td>
<td>G 2</td>
<td>-0.68</td>
</tr>
<tr>
<td>SM 11</td>
<td>0.54</td>
<td>I 47</td>
<td>-0.79</td>
</tr>
<tr>
<td>SM 9</td>
<td>0.51</td>
<td>F 21</td>
<td>-1.06</td>
</tr>
<tr>
<td>I 48</td>
<td>0.37</td>
<td>S 5</td>
<td>-1.15</td>
</tr>
<tr>
<td>I 27</td>
<td>0.22</td>
<td>F 10</td>
<td>-1.37</td>
</tr>
<tr>
<td>G 7</td>
<td>0.10</td>
<td>G 1</td>
<td>-1.58</td>
</tr>
<tr>
<td>I 45</td>
<td>0.05</td>
<td>SM 8</td>
<td>-1.81</td>
</tr>
<tr>
<td>I 29</td>
<td>0.03</td>
<td>G 19</td>
<td>-1.99</td>
</tr>
<tr>
<td>I 31</td>
<td>0.01</td>
<td>S 6</td>
<td>-2.99</td>
</tr>
</tbody>
</table>

G=Guápiles, S=Siquirres, F=Florecia, SM=San Miguel, I=Izabal, C=La Ceiba, Test=testigo
árboles (medios hermanos) dentro de las 23 progenies seleccionadas, para dejar el mejor árbol de cada parcela. Como se indicó anteriormente, existe una gran variación entre árboles dentro de progenies, y aun dentro de progenies inferiores, existen individuos sobresalientes. Por lo tanto, al momento del primer aclareo, se recomienda mantener algunos árboles clase I que ocasionalmente puedan aparecer en las progenies no seleccionadas. Además de contribuir sus genes al acervo genético del huerto y a aumentar la base genética de la semilla producida, estos árboles podrían ser utilizados eventualmente para selecciones de generación avanzada.

La selección de las 23 progenies mejores, junto con algunos árboles sobresalientes dentro de progenies no seleccionadas, resultaría al final de los aclareos en una densidad aproximada de 75-100 árboles por hectárea. Dependiendo del desarrollo del dosel, y considerando la arquitectura amplia de las copas de esta especie, puede ser necesario realizar un aclareo adicional. Una selección adicional para dejar, por ejemplo, los individuos de las 10 mejores progenies, resultaría en una densidad final de 50-75 árboles por hectárea.

AGRADECIMIENTOS

A la U.K. Overseas Development Administration (ODA), la U.S. Agency for International Development (USAID) y al Department for Development Cooperation of the Royal Norwegian Ministry of Foreign Affairs por el apoyo económico para el establecimiento y mantenimiento del ensayo; a CAMCORE por el apoyo técnico; al Sr. Gustavo López por los análisis estadísticos, a los señores Oldemar Baeza, Marvin Hernández, José Masis y Carlos Castro por su apoyo en los trabajos de campo, y a los Srs. Alexis Ramírez y Gerardo Barquero por la toma de datos.

LITERATURA CITADA

