Investigación en fenología y manejo de frutos y semillas en especies forestales nativas del trópico húmedo en la zona Atlántica de Costa Rica.

Carlos Luis Sandi Ch.¹

INTRODUCCION

Poco más del 24% del territorio de Costa Rica está bajo alguna categoría de protección gubernamental y existen alrededor de 600.000 ha. registradas como reservas privadas, que cuentan con bosques naturales. Se puede decir que hay un importante banco in situ de recursos genéticos forestales; pero resulta que muchas especies nativas de interés comercial, no se encuentran dentro de esos sitios o, al menos, se encuentran en limitadas cantidades las cuales no garantizan contar con fuentes semilleras de esas especies a mediano o largo plazo. En 1990 se inició la búsqueda de árboles semilleros que cumplieran con las características deseables de porte, calidad, y sanidad, y así darles seguimiento a la fenología para la provisión de semillas. Al inicio fue relativamente fácil, ya que muchos ejemplares estaban en fincas privadas pero los propietarios los talaron para vender su madera, y cada vez fue más difícil el acceso a estas especies. Aún así, se cuenta con una importante masa boscosa dentro de la Escuela de agricultura de la región Tropical Húmeda (EARTH), de la cual se cosechan semillas de algunas especies, según orden de prioridad: maderables, uso múltiple, protección de cuencas y alimentación de fauna silvestre, medicinales, ornamentales y para usos alternativos tales como fuentes de energía.

Se puede decir que así se inician formalmente los ensayos con especies forestales nativas, ya que anterior a estos, lo que existen son aislados ensayos y poco documentados como para brindar la información necesaria a los reforestadores del país, e insuficientes como para evacuadas de investigadores y estudiantes forestales. Sin embargo existe gran cantidad de material publicado sobre especies exóticas tales como la melina, la teca, los eucaliptos, pinos, ciprés, leucaena, acacias, etc. disponible en la Biblioteca del CATIE, así como los estudios de especies forestales nativas del Trópico Seco, Janzen (1991) y la Ing. Marielos Molina, ambos del Área de Conservación Guanacaste (ACG-MINAE) (Molina 1989).

Aprovechando la experiencia generada por estos ensayos de la DGF y la OET, la EARTH firmó en 1990 un acuerdo de cooperación con OET para la instalación y capacitación de personal dedicado a la producción de especies forestales nativas; este documento resume tan solo una parte de los resultados obtenidos a la fecha.

DESARROLLO DEL TEMA

Para iniciar las investigaciones, en 1990 fue instalada el área de viveros y germinadores forestales en el campus de la EARTH en Las Mercedes de Guácimo (10° 12' N, 83° 37' O) Provincia de Limón, Costa Rica. La temperatura media anual es de 26° C, con una mínima de 21° C y una máxima de 30,5° C; la precipitación media anual es de 3500 mm y la altura varía entre los 40 a 100 msnm se clasifica como bosque húmedo tropical (Holdridge et al 1997). Los suelos son aluviales, con un pH de 4,1 a 4,8.

La selección de las especies se basó en los resultados de los estudios obtenidos en Sarapiquí, Costa Rica, por la OET y algunas otras especies fueron tomadas en cuenta dada su presencia e importancia en la zona antes mencionada y también por recomendaciones de reforestadores y técnicos forestales que laboran en proyectos de ONG's y finqueros particulares.

Gracias a las recomendaciones del CATIE y siguiendo el uso del formulario de selección de árboles semilleros y

EARTH. clsandi@ns.earth.ac.cr
sugerencias del Banco de Semillas CATIE y de los recolectores de la OET, procedimos a marcar los ejemplares mejores tanto dentro como fuera del campus, con el alto riesgo de perder muchos árboles ubicados en fincas privadas, que, a pesar de la palabra del propietario, no existe legalmente una garantía de su permanencia como árbol portador, a no ser que se incluya dentro de un plan de manejo aprobado por el MINAE.

De las especies más difíciles de ubicar, ya sea por escasas o por sobre explotadas, se lograron marcar un mínimo de 30 individuos, lo cual garantiza la variabilidad genética del material.

En cuanto a las épocas de floración y fructificación se puede decir con cierta propiedad que varía año con año, depende mucho de las condiciones climáticas, lo mismo con las cantidades y calidades de la producción de frutos y semillas viables por árbol y por especie.

En los 10 años de observaciones y pruebas se ha conformado un listado con las principales especies utilizadas (Cuadro 1), cada una demanda en el vivero por parte de reforestadores y finqueros. Algunas de las especies utilizadas en las pruebas no están anotadas, ya que falta información o no tienen mucha demanda.

Las especies de mayor demanda año con año son: Cordia alliodora (laurel) aunque durante 1996-1999 bajó notablemente su venta por causa de los resultados en plantación, ya que exije buen drenaje y suelos profundos. Las Vochysias guatemalensis, allenii y ferruginea, han experimentado un notable auge, ya que crecen muy bien en malos suelos, crecen rápido y con buena forma, lo que llama la atención de los finqueros, aunque no mucho la de los madereros aún, por su calidad de madera. El Hieronyma alchorneoides y H. ablonga son dos especies muy prometedoras, ya que su madera es de alta resistencia y su crecimiento es excelente en suelos pesados y de mal drenaje. El Dipterex panamensis también ha sido muy solicitado, ya que la madera es escasa y de gran calidad para trabajos pesados. La especie crece rápido, al menos en altura y presenta una alta tasa de sobrevivencia en el campo. La Terminalia amazonica ha logrado llamar la atención por su gran adaptación a los suelos pobres de la zona, por la calidad de su madera y por su crecimiento relativamente rápido. Una especie que se utiliza bastante para reforestar, aunque en los tres primeros años es muy lenta en crecimiento, es Calophyllum brasiliense.

Otra serie de especies se pueden clasificar como de mediana demanda y son la mayoría, ya que no se conoce mucho de ellas y se utilizan para repoblar ciertas áreas de pastizales abandonados o enriquecimiento de charrales o tacotales y de bosques secundarios, para así mantenerlas en existencia y en observación en parcelas permanentes de muestreo.

Otro grupo son especies que no presentan ningún tipo de demanda, o sea, las despreciadas por los finqueros y reforestadores, por su madera de mala calidad, formas irregulares o un mantenimiento en podas muy alto, tal es el caso del Strychnosendron microstachyum, el Abarama idio poda, el Vitex cooperi y el Simira masonii.

Respecto a la cantidad de frutos recolectados y su manejo o escarificación, la mayoría de especies utilizadas no presentan mayores problemas para germinar, solamente que para obtener una germinación homogénea se ha tratado de desarrollar mejores técnicas, sencillas y de bajo costo.

Por ejemplo, con la especie Zanthoxylon kellermanii, conocida localmente como lagarto, las semillas poseen un aceite espeso y pegajoso que permite a la semilla mantener su contenido de humedad y ser impermeable al exterior, lo cual retarda la germinación, en este caso se procedió a limpiarlas con detergente para obtener uniformidad y se ha logrado buenos resultados. En el caso del Calophyllum brasiliense se ha logrado limpiar más cantidad de semilla con solo presionar los frutos con dos superficies planas, tipo prensa; y el resto de la limpieza es manual con abundante agua. Para las semillas pequeñas como el Hieronyma alchorneoides, se logran buenos resultados de germinación al licuarlas ligeramente y luego dejarlas en agua limpia tres días, cambiando diariamente el agua. Muchas de las semillas grandes, como el Dipterex panamensis, Lecythis ampla, Anacardium excelsum, Virola koschnyi, Carapa guianensis, y Pentaclethra macroloba, solamente han requerido abundante humedad y sombra, ya que no ha dado resultados alentadores el colocarlas al sol por un lapso corto como sucede con otras especies.

Otra de las limitantes son los tiempos de germinación, ya que especies como Sacoglottis trychogyna y Goethalsia mei anta junto con Lecythis ampla, se demoran bastantes meses para germinar bajo condiciones ambientales normales, ya que inician a los siete meses y completan a los nueve, otras tardan medianos periodos, tales como C. brasiliense, 45 días para iniciar la germinación.

Para el número de semillas por kg se tomaron ocho muestras de 100 semillas cada una, según lo determina la International Seed Testing Association (ISTA 1976) Los contenidos de humedad varían desde los 13 hasta los 67 %. Especies como L. Ampla tienen un promedio de 160 semillas por kg mientras que otras como Miconia multisipicata tiene hasta 635.000 semillas por kg y C. candidissimum reportó hasta 3 millones de semillas por kg.

Las camas de germinación contienen como sustrato arena lavada y reciben riego dos veces diarias, a las 6 am y a las 2 pm. Los métodos de recolección van desde mantas o sarán en el suelo hasta escalar los árboles mediante cuerdas de
alpinismo y equipos especiales. Muchos de los equipos son de alto costo pero se compensa con el valor de cada kg de semillas en el mercado nacional, por ejemplo, un kg de *S. macrophylla* tiene un valor de 100 dólares americanos actualmente.

La venta de semillas no ha sido considerada en este trabajo, ya que toda la semilla colectada se utiliza en la institución, se dona a viveros comunales o proyectos de investigación más bien se requiere de germoplasma de otras instituciones tales como el CATIE, el ITCR, y la Cámara Forestal.

Las principales investigaciones hasta ahora recopiladas de semillas y las mismas especies forestales nativas se han publicado en la Revista Arboles y Semillas del Neotrópico, Flores (1992) y se han editado hasta el momento cuatro volúmenes con varias especies cada uno, además de varias tesis de grado elaboradas tanto dentro como fuera del país.

Estos aportes han constituido una pieza vital para la conservación del recurso bosque, y ya las mismas autoridades del gobierno han determinado cuáles especies están en mayor peligro de desaparecer (Cuadro 1).

Cuadro 1. Principales especies utilizadas

<table>
<thead>
<tr>
<th>Anthodiscus choconensis</th>
<th>CARYOCARACEAE</th>
<th>ajo negro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caryodaphnis burgeri</td>
<td>LAURACEAE</td>
<td>quira</td>
</tr>
<tr>
<td>Cedrela fissilis</td>
<td>MELIACEAE</td>
<td>cedro real</td>
</tr>
<tr>
<td>Cedrela salvadoriensis</td>
<td>MELIACEAE</td>
<td>cedro</td>
</tr>
<tr>
<td>Copacaera cambar</td>
<td>CAESALPINIACEAE</td>
<td>cambar</td>
</tr>
<tr>
<td>Cordia geranancus</td>
<td>BORAGINACEAE</td>
<td>laurel negro</td>
</tr>
<tr>
<td>Couratari scitornorii</td>
<td>LECYTHEIDACEAE</td>
<td>copo o matasano</td>
</tr>
<tr>
<td>Guanacum sanctum</td>
<td>ZYGOPHYLLACEAE</td>
<td>guyacán real</td>
</tr>
<tr>
<td>Hymenolobium mesoamericanum</td>
<td>PAPILIONACEAE</td>
<td>cola de pavo</td>
</tr>
<tr>
<td>Myxylon balsamum</td>
<td>PAPILIONACEAE</td>
<td>bálsamo,chirraca</td>
</tr>
<tr>
<td>Parachamaeum gruberi</td>
<td>PAPILIONACEAE</td>
<td>sangrillo</td>
</tr>
<tr>
<td>Parkia pendula</td>
<td>MIMOSACEAE</td>
<td>tamarindón</td>
</tr>
<tr>
<td>Platymiscium parviflorum</td>
<td>PAPILIONACEAE</td>
<td>ciudtal o dambar</td>
</tr>
<tr>
<td>Platymiscium pinnatum</td>
<td>PAPILIONACEAE</td>
<td>ciudtal</td>
</tr>
<tr>
<td>Podocarpus costaricensis</td>
<td>PODOCARPACEAE</td>
<td>pinillo</td>
</tr>
<tr>
<td>Podocarpus guatemalensis</td>
<td>PODOCARPACEAE</td>
<td>tostado</td>
</tr>
<tr>
<td>Sclerolobium costaricense</td>
<td>CAESALPINIACEAE</td>
<td>caoba</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>MELIACEAE</td>
<td></td>
</tr>
</tbody>
</table>

Hymenolobium mesoamericanum, produce frutos cada 5 y hasta 7 años, y hasta ahora en julio de 1999 se recolectaron frutos y se están realizando estudios sobre su germinación y respuestas en vivero y plantación.

Algunas pruebas y ensayos han ayudado a encontrar semillas de procedencias más resistentes al ataque de plagas y enfermedades, a lo cual contribuyen las investigaciones en genética forestal, como en los casos de *Cedrela odorata* y *Swietenia macrophylla*.

Se determinó que la especie *Virola koschyi* demuestra muy poca o casi ninguna tolerancia a los cambios de temperatura y humedad, ya que se coloca para germinar inmediatamente es colectada del árbol, y al día siguiente o máximo dos días, ya presenta muy baja capacidad de germinación.

CONCLUSIONES

Aprovechando los conocimientos adquiridos por diversos trabajos en diferentes instituciones y personas, debemos encontrar el punto de equilibrio mediante el cual tanto los propietarios de terrenos con árboles semilleros, los colectores, bancos de semillas y usuarios podamos pagar un precio justo para un valor real por cada kilogramo de semilla y por otra parte, sentar las bases para las responsabilidades en cuanto a calidad de las distintas procedencias y fuentes semilleras utilizadas, ya que solamente así se podrá garantizar, que las plantaciones logren desarrollar con éxito y no simplemente desecar o
descartar especies por una mala selección del material. Es importante contar con bancos de semillas que ofrezcan cierta variedad de especies y procedencias y que en el caso de las especies cuyas semillas son recalcitrantes, se pueda programar una colecta por demanda anticipada, mediante el pago de un depósito de garantía o un sistema de información para canje y venta en cada época de cosecha.

La reforestación se ha visto limitada básicamente por la escasez de material de calidad, en el caso de las especies forestales nativas por supuesto. En el país ya se ha logrado avanzar mediante los diferentes eventos que ha patrocinado el Banco de Semillas Forestales del CATIE y el Programa de Semillas Forestales PROSEFOR-CATIE-DANIDA. Por otra parte, debe de existir un compromiso firme por parte de los bancos de semillas, de intentar rescatar las especies amenazadas o en peligro de extinción, ya que existen varios manuales que las identifican claramente (Jiménez 1993 & SSC/ UICN 1996) Por parte del Gobierno de Costa Rica, ha logrado publicar en el diario oficial La Gaceta, cuales especies están vedadas a consecuencia de la sobre explotación (SINAC-MINAE 1998). Se ha logrado documentar el nivel de amenaza o peligro de extinción en varios trabajos del Instituto Nacional de Biodiversidad (INBIO) como en el caso de las 18 especies vedadas aquí anotadas.

La EARTH planea proseguir la reforestación con especies forestales nativas en los pastizales abandonados y en antiguos bananeras, para lo cual se ha obtenido el apoyo financiero de la Comunidad Europea y de Holanda, además de dedicar proyectos al secuestro de CO2 con asesoría del Centro Científico Tropical (CCT) (Alpizar et al. 1997), y continuar con las labores de los viveros y germinarios instalados permanentemente para tales fines, así como apoyar todo esfuerzo tendiente a mejorar la calidad del germoplasm.

REFERENCIAS

